## Service Manual

# Datascope **Trio**™





Service Manual

# Datascope **Trio**™



Trio<sup>™</sup> is a U.S. trademark of Mindray DS USA, Inc. Velcro<sup>®</sup> is a registered trademark of Velcro Industries B.V. Navigator<sup>™</sup> is a U.S. trademark of Mindray DS USA, Inc. Masimo SET<sup>®</sup> is a U.S. registered trademark of Masimo Corp.

*Copyright* © *Mindray DS USA, Inc., 2008. All rights reserved. Contents of this publication may not be reproduced in any form without permission of Mindray DS USA, Inc.* 

| Foreword                                  | iii |
|-------------------------------------------|-----|
| Warnings, Precautions And Notes           | iii |
| Warning                                   | iii |
| heory of Operation                        |     |
| Introduction                              |     |
| Hardware Overview                         |     |
| Power Supply Board (Lead Acid Battery)    |     |
| Power Supply Board (Lithium Ion Battery)  |     |
| CPU Board (Main Control Board)            |     |
| Keypad Board                              |     |
| Keypad Board                              |     |
| Keypad Board                              |     |
| TR60-C Recorder                           |     |
| Serial Interface Converter Board          |     |
| Parameter Circuit Descriptions            |     |
| ECG                                       |     |
| Respiration                               |     |
| NIBP                                      |     |
| SpO <sub>2</sub>                          |     |
| Temperature                               |     |
| IBP (optional)                            |     |
| alibration/Maintenance                    |     |
| Calibration Introduction                  |     |
| Warnings and Guidelines                   |     |
| Test Equipment and Special Tools Required |     |
| Calibration and System Checks             |     |
| Device Appearance and Installation Checks |     |
| Maintenance Menu                          |     |
| Safety Tests                              |     |
| Testing Each Parameter                    |     |
| ECG and RESP                              |     |
| NIBP                                      |     |
| SpO <sub>2</sub>                          |     |
| 5002<br>TEMP                              |     |
| IBP                                       |     |
| arts                                      |     |
|                                           |     |
| Exploded Views of the Trio Monitor        |     |
| Parts Listing                             |     |
| epair Information                         |     |
| Introduction                              |     |
| Single Temp Cable Assembly                |     |
| ECG Cable Assembly                        |     |
| Troubleshooting                           |     |
| Module-level Troubleshooting              |     |
| Disassembly Instructions                  |     |
| Tools Needed                              |     |
| Removal of the Front Housing              |     |
| Removal of Display                        |     |
| Removal of Thermal Printhead Recorder     |     |
| Removal of PCB Chassis Assembly           |     |
| Removal of Display Mounting Plate         |     |
| Replacement of 3V Lithium Cell Battery    |     |

| Removal of Power Supply Assembly        |  |
|-----------------------------------------|--|
| Removal of PCB Chassis Rear Panel Plate |  |
| Removal of NIBP/IBP PCB Mounting Plate  |  |
| Removal of Handle                       |  |
| ECG Cable ESIS and Non ESIS             |  |
| ECG Shielded Lead Wires                 |  |
| Trio Wall Mounts and Rolling Stand      |  |
| Appendix                                |  |
| System Alarm Prompts                    |  |

## Foreword

This service manual gives a detailed description of the **Trio** Portable Patient Monitor, including, circuit descriptions, test procedures and a spare part listing. This manual is intended as a guide for technically qualified personnel during repair, testing or calibration procedures.

## Warnings, Precautions And Notes

Please read and adhere to all warnings, precautions and notes listed here and in the appropriate areas throughout this manual.

A **WARNING** is provided to alert the user to potential serious outcomes (death, injury, or serious adverse events) to the patient or the user.

A **CAUTION** is provided to alert the user to use special care necessary for the safe and effective use of the device. They may include actions to be taken to avoid effects on patients or users that may not be potentially life threatening or result in serious injury, but about which the user should be aware. Cautions are also provided to alert the user to adverse effects on this device of use or misuse and the care necessary to avoid such effects.

A **NOTE** is provided when additional general information is applicable.

## Warning

- WARNING: The NIBP pneumatic test (specified in the EN 1060-1 standard) is used to determine if there are air leaks in the NIBP airway. If the system displays the prompt that the NIBP airway has air leaks, please contact the manufacturer for repair.
- CAUTION: To ensure continued use of the Factory Defaults when the unit is powered off and on, save the Factory Defaults as the User Default Configuration after reassembly.

This page intentionally left blank.

# $\overline{1.0}$ Theory of Operation

## 1.1 Introduction

The **Trio** portable patient monitor uses a parameter module as the basis for acquiring patient data. The results are transmitted to the main control board to process and display the data and waveforms. CPU board commands and status messages of modules are transmitted via databus. The structure of the entire system is shown in the figure below.

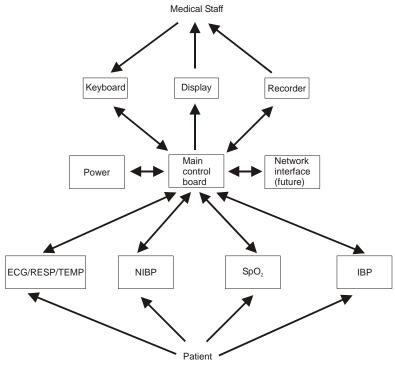



FIGURE 1-1 System Structure Diagram

As shown in the above figure, the four parameter modules execute real-time monitoring of NIBP, SpO<sub>2</sub>, ECG/RESP/TEMP and IBP through the use of blood pressure cuffs and patient cables. The patient data is transmitted to the CPU board for display. When required, data may be printed out via the recorder.

## 1.2 Hardware Overview

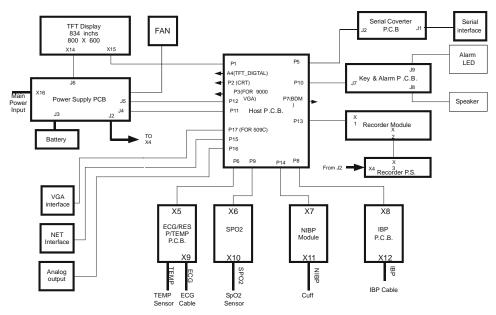



FIGURE 1-2 Connection Diagram

#### 1.2.1 Power Supply Board (Lead Acid Battery) P/N 0671-00-0235

Trio power supply board specifications:

- AC input voltage:100~250 VAC
- AC input current: <1.6 A
- AC voltage frequency: 50/60 HZ
- Two-way output voltage: 5 V/12 V, normal working current is 1.5 A for 5 V, 2 A for 12 V
- Two-way output voltage has functions of short-circuit, over-current and over-voltage protection
- The power board has reset function
- The power board can manage the charging process of lead-acid battery (12 V/ 2.3 AH). The charging time is 8 hours maximum.

```
NOTE: Power Supply Board must be connected to resistive load to operate properly and avoid damage due to an overcurrent condition.
```

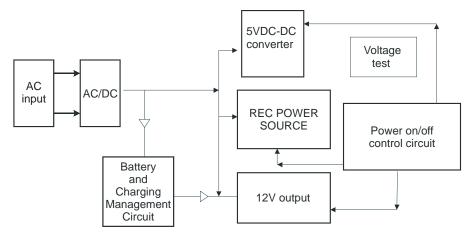



FIGURE 1-3 Block diagram of Trio power supply board

#### **Key Test Points**

| NO. | NAME                | LOCATION                  | FUNCTION                                                                                    |
|-----|---------------------|---------------------------|---------------------------------------------------------------------------------------------|
| 1   | Rectified voltage   | C12                       | Primary rectified voltage, range: 107~354 V                                                 |
| 2   | rtn1                | C12 negative<br>electrode | Primary ground                                                                              |
| 3   | Driving<br>waveform | Q1.1                      | There is a driving waveform of about 100 KHZ between Q1.1 and the negative electrode of C12 |
| 4   | VIN                 | C19 positive<br>electrode | 17.5 V provide input voltage for DC-DC                                                      |
| 5   | GND                 | C19 negative<br>electrode | Secondary ground                                                                            |
| 6   | 5B                  | C47 positive<br>electrode | 5 V spare output, provide power for on/off circuit                                          |
| 7   | 5 V                 | ZD3 cathode               | 5 V output, voltage range is 4.75~5.25 V                                                    |
| 8   | 12 V                | ZD3 cathode               | 12 V output, voltage range is 11.0~13.0 V                                                   |

#### 1.2.2 Power Supply Board (Lithium Ion Battery) P/N 0671 -00-0051

Trio Power Supply board specifications:

- AC input voltage:110~240VAC+10%
- AC input current: <1.6A
- AC voltage frequency: 50/60+3HZ
- Two-way output voltage: 5V/12V, normal working current is 1.3A for 5V, 1.3A for 12V.
- Two-way output voltage has functions of short-circuit, over-current and over-voltage protection.
- The power board has reset function.
- The power board can manage the charging process of li-ion battery (11.1V/4.4AH). The charging time is 6.5 hours maximum.




FIGURE 1-4 Block diagram of Trio power supply board

#### **Key Test Points**

| NO. | NAME                    | LOCATION                   | FUNCTION                                                                                              |
|-----|-------------------------|----------------------------|-------------------------------------------------------------------------------------------------------|
| 1   | Oscillator<br>frequency | Pin 4 of U1                | Generate a oscillating frequency about 100kHZ                                                         |
| 2   | GND                     | CC61 negative<br>electrode | Primary Ground                                                                                        |
| 3   | D-S waveform            | Q1.2                       | There is a waveform of about<br>100KHZ,107~354V between Q1.2 and the<br>negative electrode of C12     |
| 4   | Driving<br>waveform     | Q1.1                       | There is a driving waveform of about 100KHZ,<br>15V between Q1.1 and the negative electrode of<br>C12 |
| 5   | Rectified<br>waveform   | D5 anode                   | Secondary rectified voltage                                                                           |
| 6   | VIN                     | C18 positive<br>electrode  | 17.6V,provide input voltage for DC-DC                                                                 |

| Key Test | Points |  |
|----------|--------|--|
| ,        |        |  |

| NO. | NAME                | LOCATION                  | FUNCTION                                         |
|-----|---------------------|---------------------------|--------------------------------------------------|
| 7   | 12V                 | C41 positive<br>electrode | 12V output, voltage range is 11.0~13.0V          |
| 8   | 5V                  | C58 positive<br>electrode | 5V output, voltage range is 4.75~5.25V           |
| 9   | Feedback<br>voltage | R37 positive<br>electrode | There is a DC waveform of about 2.5V between R37 |

1.2.3

## CPU Board (Main Control Board)

P/N 0671-00-0056 or P/N 0671-00-0236

## 1.2.3.1 Overview

Power Supply Input Voltage: +12 V±5%; +5 V±5%

The main control board uses the Coldfire series embedded microprocessor 5206e manufactured by Motorola Company. It also adopts 3.3 V low-voltage power supply to reduce the power consumption. Other main components on the main control board include: Flash, SRAM, FPGA, network controller, etc., all of which require 3.3 V power. The capacity of the Flash is 2 MB or 4 MB\*, which employs two parallel-connected 512K x 16 or 1M x 16\* chips and therefore uses 32-bit character width to support CPU to operate at the highest possible speed instead of accessing the DRAM for operation. The main control board has also a 4 MB memory, which is made up of two parallel-connected 1M ×16-bit chips. Because no executing program is required to be loaded, only one RTC is used. This chip uses one 225maH dry cell as the spare power supply. In addition, one 2KB E2PROM is used to store parameters. The main control board supports a resolution of 800 x 600 and provides three interfaces: a LVDS interface, a 6 bit digital interface, and a VGA interface. The monitor displays characters and waveforms, in the same color, on the screen. The support system needs 10 serial ports, and the baud rate (4800/9600/19.2 K/38.4 K/76.8 K) can be selected by software and interface buffer drives. The main control board adopts the network controller AX88796 (3.3 V, 10 MHz), which has inside 16 K high-speed buffer SRAM. The MAX5102 8-bit single-way D/A converter is used to fulfill analog output. The 5 V and 12 V regulated voltage supplies are introduced from the power board, and therefore 3.3 V and 2.5 V working supplies are respectively generated. Among them, 2.5 V is to be used for the internal verification of FPGA.

\*Applies to P/N 0671-00-0056.

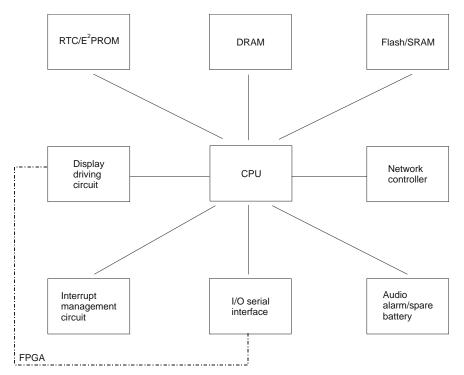



FIGURE 1-5 Block Diagram of Trio CPU board

## 1.2.3.2 Detailed Description

3.3 V low-voltage power supply component is used. The external power is 5 V, which is converted by the DC/DC converter into 3.3 V and 2.5 V, the latter voltage being especially used for FPGA. The main control board is connected to external devices via corresponding interfaces and input: the power supply connected to the interface board, the 9-way serial port, TFT interface, analog VGA interface, network interface, analog output and a spare serial port, etc. The BDM interface, on the board, is reserved for the purpose of software testing and downloads.

### CPU

Uses Coldfire 5206e. Clock rate is 54 MHz, working voltage is 3.3 V.

### FLASH

Uses two parallel-connected  $512K \times 16$  or  $1M \times 16^*$  FLASH memories. The output terminal PP1 of CPU is used to realize write-protection of FLASH. It is effective in low-level state.

\*Applies to P/N 0671-00-0056.

### DRAM

The **Trio** CPU main control board uses two parallel-connected  $1M \ge 16$  DRAM, which construct 4M address space.

### Display

The resolution is 800 x 600. Frequency is 38 MHz. It works in an appropriate SVGA mode. VRAM adopts 16-bit structure and is divided into an alphanumeric character screen and a waveform screen. To the left of the alphanumeric character screen is the corresponding waveform screen. The character screen is used to display data and flashing alarming parameters. The user can select the color of the waveform and alphanumeric characters for each parameter.

### **LVDS** Interface

By utilizing time-share sampling, the LVDS (Low Voltage Differential Signaling) interface converts multi-channel CMOS/TTL signals into single channel, low-voltage, double-frequency differential signals. LVDS interface is generally realized by a special integrated circuit. The special LVDS chip used for display is DS90CF363A. This chip converts 18-bits of RGB data and 3 bits of LCD timing and control data (21 bits of CMOS/TTL data) into 3 LVDS data streams. Four differential signals including the 3 data streams and a phase-locked frequency are transmitted to the display screen. The working frequency of DS90CF363A is 20~65 MHz.

### **Reset and Parameter Storage**

The CPU board uses an integrated chip CAT1161, which controls both power-on reset and parameter storage. This chip has an E2PROM with the capacity of 2K. It can be used to modify and store various nonvolatile parameters of the host. The power-on reset and WATCHDOG functions are used to realize reset function of the CPU board. When J1 is open circuit, the software can also disable WATCHDOG by using the output signal PPO of CPU in order to realize the self test of WATCHDOG. The bus interface of this chip is I2C.

### **Network Controller**

The network controller adopts special chip AX88796. Its working clock is 25 MHz. It also has internal 16 K high-speed buffer SRAM. The data bus of this chip is 16-bit width.

| NO. | NAME  | FUNCTION                                        |  |
|-----|-------|-------------------------------------------------|--|
| 1   | V33   | Digital supply voltage: +3.3 V                  |  |
| 2   | V25   | FPGA supply voltage: +2.5 V                     |  |
| 3   | V3    | Lithium battery voltage: +3 V                   |  |
| 4   | CLK   | CPU master clock: 54 MHz                        |  |
| 5   | PCK   | FPGA and display clock: 38 MHz                  |  |
| 6   | NCK   | Network chip clock: 25 MHz                      |  |
| 7   | /RST  | System reset signal                             |  |
| 8   | /NINT | Network chip interrupt signal                   |  |
| 9   | DO    | Signal indicating successful FPGA configuration |  |

0070-10-0591-01

#### **Key Test Points**

1.2.4 Keypad Board P/N 0671-00-0237

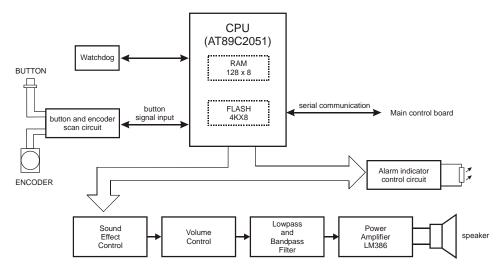



FIGURE 1-6 Keypad Block Diagram

### 1.2.4.1 Detailed Description

This circuit has three main parts:

- 1. Alarm Audio Signal Circuit: The alarm audio signal circuit is made up of components including U3, U6, R8, R25, E6 (E1), R11, R12, R3 and R32. P3.3 is used to control the length of the alarm sound. R8, E1 and E6 are used to generate the rise edge and the fall edge of the sound signal. Q1 is used to make the rise edge and fall edge of the low-level alarm slower than those of medium/high-level alarm. D1 is used to generate the heart beat and pulse tone. If P3.2 is high, the alarm square waveform of P3.5 will pass and, as a result, control P3.2 to generate a "heart beat tone" or "rotary encoder tone". R11, R12, R3, R32 and R18 together construct a variable voltage-dividing network which, by controlling the state of RA and RB via U3, determines the sound volume level.
- 2. RC Bandpass Filter/Audio Amplifier: A one-stage RC bandpass filter is used to block the low frequency component of the alarm signal (700 Hz. square wave) before it is input to the audio amplifier, LM386. This bandpass filter is made up of R13, R28, C9, C15, RA and the input resistance R in of LM386.
- **3.** Alarm Indicator Control/Encoder and Key Scanning: The flashing of the alarm indicator in red or green is controlled by the state of microchip P1.6 and P1.7. The microprocessor scans the state of microchips P1.0~P1.2 to determine which key, or if the encoder, is pressed. The microprocessor scans the state of microchips P1.4 and P1.5 to determine if the encoder is turned and in which direction it is turned.

#### **Key Test Points**

| NO. | NAME               | LOCATION  | FUNCTION                                                             |
|-----|--------------------|-----------|----------------------------------------------------------------------|
| 1   | VCC                | P4.4      | Power input, range: 4.8~5.1V                                         |
| 2   | GND                | P4.5      | Power supply and signal ground                                       |
| 3   | RST                | U1.1      | CPU reset signal. At low level (<0.3V) when operating normally       |
| 4   | Crystal oscillator | X1.1, X.2 | CPU crystal oscillator. Sine wave (1.5~3.5V) when operating normally |

1.2.5 Keypad Board P/N 0671-00-0058

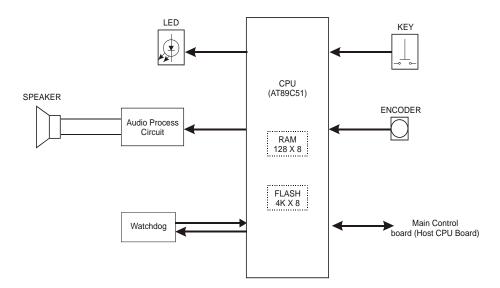



FIGURE 1-7 Keypad block diagram

## 1.2.5.1 Detailed Description

This module detects key and encoder input signals, converts them into code then sends these coded signals to the main board. The main control board (Host CPU board) in turn sends commands back to the keyboard's control indicator and audio process circuits, which enable or disable audio and visual alarm respectively, as required.

#### CPU

- Detects key and encoder input signals;
- Controls LED status;
- Controls Audio Process Circuit;
- Regularly zeroes Watchdog Timer;
- Communicates with main board.

## Audio Process Circuit

Generates audio signals to drive the speaker.

## Watchdog

- Upon power-up, supplies Reset signal to CPU;
- Provide functions of Watchdog Timer Output and voltage detection.

| NO. | NAME               | LOCATION | FUNCTION                                                                       |
|-----|--------------------|----------|--------------------------------------------------------------------------------|
| 1   | VCC                | P4.4     | Power input, range: 4.8~5.2V                                                   |
| 2   | GND                | P4.5     | Power supply and signal ground                                                 |
| 3   | RST                | U1.10    | CPU reset signal. At low level(<0.3V) when operating normally                  |
| 4   | Crystal oscillator | X1.1,X.2 | CPU crystal oscillator. Sine wave signal<br>(1.5~3.5V) when operating normally |

#### **Key Test Points**

#### 1.2.6

Keypad Board P/N 0671-00-0064

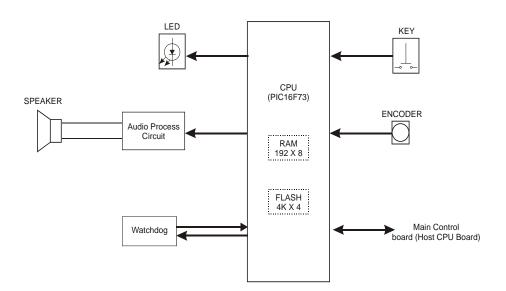



FIGURE 1-8 Keypad block diagram

## 1.2.6.1 Detailed Description

This module detects keypad and encoder input signals, converts them into code and transmits the code to the Host CPU board. The Host CPU board sends commands to the keyboard which in turn controls the indicator and audio process circuits, activating audio and visual alarms accordingly.

#### CPU

The Keypad Board's CPU is responsible for the following functions:

- Detects keypad and encoder input signals
- Controls LED status
- Controls Audio Process Circuit
- Regularly zeroes Watchdog Timer
- Communicates with main board.

### Audio Process Circuit

Generates audio signals to drive the speaker.

## Watchdog

- Upon power-up, supply Reset signal to CPU
- Provide functions of Watchdog Timer Output and voltage detection.

#### Key test points

| NO. | NAME               | LOCATION          | FUNCTION                                                                       |
|-----|--------------------|-------------------|--------------------------------------------------------------------------------|
| 1.  | 5V/5B              | J5 pin 1          | Power input, range: 4.0~5.5V                                                   |
| 2.  | GND                | J5 pin 2          | Power supply and signal ground                                                 |
| 3.  | RST                | J5 pin 3          | CPU reset signal. At low level(<0.8V (during normal operation)                 |
| 4.  | Crystal oscillator | X1 pin 1,X1 pin 2 | CPU crystal oscillator. Sine wave signal<br>1.5~3.5V (during normal operation) |

## 1.2.7 TR60-C Recorder

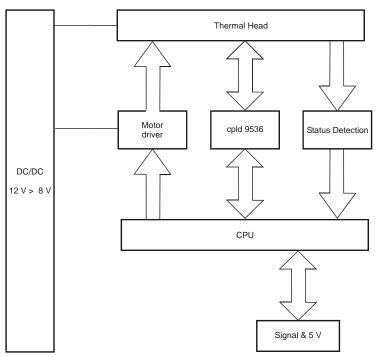



FIGURE 1-9 Block Diagram of TR60-C drive board

## 1.2.7.1 Detailed Description

## Thermal Head

The thermal head, the core component in the TR60-C recorder, is the PTMBL1300A thermal head, manufactured by the ALPS company.

#### CPU System

The CPU system is the core of the drive board. Its task is to receive the data from the host and generate lattice messages after calculation using a specified algorithm. These messages are then sent to the thermal head for printing. The CPU system can simultaneously collect data from both the thermal head and the drive board and display data sent to the host.

#### Power Conversion

The recorder requires the system to provide two voltages: 12 V and 5 V. The 5 V is directly driven by the logic and analog circuit of the drive board and the thermal head. Its current is less than 150 mA. The 12 V is converted into 8 V (by the DC/DC on the board) to drive the thermal head and the motor. The current required is determined by the printing content and ranges from 0.5 A to 2 A.

#### Motor Drive

A small motor is used to control the paper movement at the thermal head. The processor on the drive board uses two motor drives IC LB1843 V to control and drive the motor. These two IC's use constant current to control and drive the motor.

#### Status Detection

To correctly and safely control and drive the thermal head and the motor, the drive board must use the sensor inside the thermal head to detect the following signals: the position of the chart paper, if the chart paper is installed and if the temperature of the thermal head has exceeded the limit.

#### **Key Test Points**

| NO. | NAME  | LOCATION | FUNCTION                                                           |
|-----|-------|----------|--------------------------------------------------------------------|
| 1   | 12 V  | JP3.1    | Power input, range: 10~18 V                                        |
| 2   | GND   | JP3.2    | Power and signal ground                                            |
| 3   | VPP   | U7.8     | Power supply for heating thermal head and drive motor: 7.8 V~8.4 V |
| 4   | VCC   | U1.14    | +5 V supply: 4.75~5.25 V                                           |
| 5   | RESET | U3.10    | CPU reset signal. At high level(>2.4 V) after<br>power-on          |

## 1.3 Serial Interface Converter Board

The Serial Interface Converter Board is used to convert the TTL level (5V) to RS232 level.

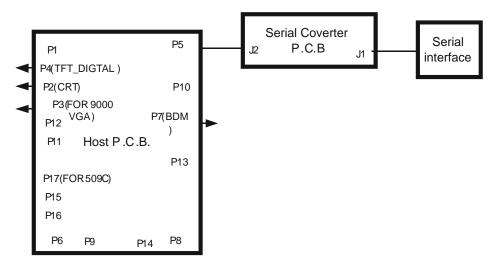



FIGURE 1-10 Serial Interface connection diagram

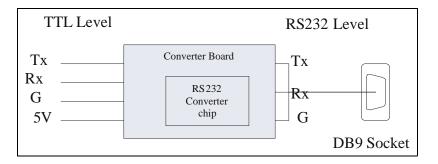



FIGURE 1-11 Block diagram of Serial Interface Converter Board

## 1.4 Parameter Circuit Descriptions

## 1.4.1 ECG

The main functions concerning ECG are:

- Lead: 3-lead, 5-lead
- Lead Method; I, II, III, avR, avL, avF, V, CAL
- Floating Input
- Right-Leg Drive
- Lead-off Detection

The ECG circuit is responsible for processing the ECG signals of human body. The circuit consists of following parts:

**Input Circuit:** The ECG electrodes are connected into the circuit through the cable. This circuit is mainly used to protect ECG input stage and filter the signals so as to remove the outside interference.

**Buffer Amplifying Circuit:** Used to convert the impedance of ECG signals, so as to ensure that the ECG has a very high input impedance but only low output impedance.

**Right-Leg Drive Circuit:** The middle output point of the buffer amplifying circuit is reversely amplified and then fed to the RL of the 5-lead ECG to maintain the human body in a equipotential state. This method can reduce the interference and raise the common-mode rejection ratio of the circuit.

**Lead-off Detection:** Based on the theory that the lead-off may cause the output of the buffer amplifying circuit to change, we can use the comparator to accurately determine if the lead has fallen off. In this way, the level can also be converted into TTL level for the MPU to test.

**Main Amplifying Circuit:** A measurement amplifier consisting of three standard operation amplifiers.

**Last Stage Processing Circuit:** Used mainly to couple ECG signals, program control of the gain amplifier, filter the waveform and move the level, amplify the signal and send it to the analog-to-digital converter.

### 1.4.2 Respiration

Respiration is measured by the thoracic impedance method. When a person is breathing, his chest moves up and down. This movement equals the impedance change between electrodes RA and LL. The monitor converts the high-frequency signals passing through RA and LL into amplitude-modulated high-frequency signals, which are then demodulated and amplified into electronic signals varying with the respiration changes and then transmitted to analog-digital converter. The RESP module is made up of a respiration circuit board and a coupling transformer. The circuit includes stages such as: oscillation, coupling, demodulation, preliminary amplification and high-gain amplification.

## 1.4.3 NIBP

The monitor measures non-invasive blood pressure using the oscillometric method. Detailed measurement procedures follows:

- 1. Inflate the cuff encircled around the upper arm until the pressure in the cuff blocks the blood flow in the artery of the upper arm.
- 2. Then deflate the cuff according to the requirement of the algorithm.
- **3.** With the pressure decreasing in the cuff, the arterial blood will palpitate with the pulse, which results in pulsation in the cuff. Through the pressure sensor, connected to the bladder of the cuff, a pulsation signal synchronous with the patient's pulse will be generated.
- **4.** After being filtered by a high-pass filter (about 1 Hz), this signal becomes the pulsating signal and is amplified. The amplified signal is then converted into a digital signal by the A/D converter.
- **5.** After processing this digital signal, systolic pressure, diastolic pressure and mean pressure can be obtained. To avoid measurement errors, choose appropriate cuffs for patient size. The NIBP module also has an overpressure protection circuit to prevent the cuff from being inflated to a very high pressure.

The main operating modes of NIBP are:

A. Adult/Pediatric

Select according to the patient size, weight and age.

B. Manual Measurement

Manual measurement is also called single measurement. It means the monitor only performs one measurement for each time the **NIBP** key is pressed.

**C.** Interval Measurement

Interval measurement means to perform one measurement within selected time cycle. Time intervals can be set up as: 1, 2, 3, 4, 5, 10, 15 and 30 minutes, 1, 2, and 4 hours, **OFF**, **CONT.** (Continuous). If set to continuous, the monitor will perform a measurement continuously for 5 minutes then revert to an interval setting of 5 min. Continuous measurement is effective in monitoring changes in blood pressure.

## SpO<sub>2</sub>

1.4.4

SpO<sub>2</sub> Plethysmograph measurement is employed to determine the oxygen saturation of hemoglobin in the arterial blood. If, for example, 97% hemoglobin molecules in the red blood cells of the arterial blood combine with oxygen, then the blood has a SpO<sub>2</sub> oxygen saturation of 97%. The SpO<sub>2</sub> numeric on the monitor will read 97%. The SpO<sub>2</sub> numeric shows the percentage of hemoglobin molecules which have combined with oxygen molecules to form oxyhemoglobin. The SpO<sub>2</sub>/Pleth parameter can also provide a pulse rate signal and a plethysmograph. Arterial oxygen saturation is measured by a method called pulse oximetry. It is a continuous, non-invasive, method based on the different absorption spectra of reduced hemoglobin and oxyhemoglobin. It measures the amount of light that is transmitted through patient tissue (such as a finger or an ear).

The sensor measurement wavelengths are nominally 660 nm for the Red LED and 940 nm for the Infrared LED. Maximum optical power output for LED is 4 mW. The amount of light transmitted depends on many factors, most of which are constant. However, one of these factors, arterial blood flow, varies with time because it is pulsating. By measuring the light absorption during a pulsation, it is possible to derive the oxygen saturation of the arterial blood. Detecting the pulsation gives a pleth waveform and pulse rate signal. The SpO<sub>2</sub> value and the pleth waveform can be displayed on the main screen.

## 1.4.5 Temperature

The temperature circuit can amplify and filter the input signal of the temperature probe and then output it into the A/D sampling circuit on the ECG/RESP board. This circuit consists of sampling switching, constant-current supply, signal amplifier, filter and probe detector. The output signal of the circuit has clamping protection to ensure that the output voltage is less than VCC. The circuit also has a self-calibrating function.

## 1.4.6 IBP (optional)

Invasive Blood Pressure monitors arterial pressure, central venous pressure and pulmonary arterial pressure.

IBP may be measured by inserting the catheter into the appropriate blood vessel. The end of the catheter, located outside the human body, should connect directly to the pressure transducer.

Inject normal saline into the catheter. Since the liquid can transfer pressure, the pressure inside the blood vessel can be transferred to the outside pressure transducer. In this way we can obtain the waveform of the dynamic pressure inside the vessel. Systolic, diastolic and mean pressures are calculated by using an algorithm.

This page intentionally left blank.

# 2.0 *Calibration/Maintenance*

## 2.1 Calibration Introduction

The following procedures are provided to verify the proper operation of the **Trio** Monitor. A menu driven interface is used to execute all verification tests.

## 2.2 Warnings and Guidelines

In the event that the instrument cover is removed, observe these following warnings and general guidelines:

- **1.** Do not short component leads together.
- 2. Perform all steps in the exact order given.
- **3.** Use extreme care when reaching inside the opened instrument. Do not contact exposed metal parts which may become "live".
- **4.** Read through each step in the procedure, so it is understood prior to performing the step.

## 2.3 Test Equipment and Special Tools Required

- Digital or Mercury Manometer w/bulb and valve 0-300 mmHg
- Test Chamber/Dummy Cuff (P/N 0138-00-0001-03)
- DVM
- Patient Simulator
- Safety Analyzer (Dempsy Model 431 or Equivalent)
- Metric Ruler
- PC or Laptop w/Windows 98 or above, CD-ROM drive, and Ethernet card installed

## 2.4 Calibration and System Checks

## 2.4.1 Device Appearance and Installation Checks

Inspect the **Trio** Monitor to ensure that:

- The outer housing of the device is clean and has no scratches or cracks
- When shaking the device, there are no loose components
- All keys are smooth and free for operation
- Labels are complete, sufficient and accurate
- Standard configuration is complete and all connectors are installed securely

## 2.4.2 Maintenance Menu

The **MAINTENANCE** menu provides access to all user operable calibration checks. It also provides access to certain technical information and settings. To access the **MAINTENANCE** menu, turn the unit on, rotate the Navigator<sup>™</sup> knob to highlight the **MENU** icon at the bottom of the screen and push the knob to select the **SYSTEM MENU**. From the **SYSTEM MENU**, select **MAINTENANCE**.

| MAINTENANCE                        |             |  |  |
|------------------------------------|-------------|--|--|
| IBP PRESSURE CALIBRATE             | ERROR LOG   |  |  |
| NIBP CAL                           | FACTORY     |  |  |
| NIBP PNEUMATIC                     | SERIAL PORT |  |  |
| ECG CAL                            | DEMO        |  |  |
| VERSION                            |             |  |  |
| Select to return to previous menu. |             |  |  |

FIGURE 2-1 Maintenance Menu DIAP units (S/N MC15000-XX and above)

| MAINTENANCE                        |               |  |  |  |
|------------------------------------|---------------|--|--|--|
| IBP PRESSURE CAL                   | VERSION       |  |  |  |
| NIBP CAL                           | ERROR LOG     |  |  |  |
| NIBP PNEUMATIC                     | FACTORY       |  |  |  |
| ECG CAL                            | DEMO          |  |  |  |
| Select to return to previous menu. |               |  |  |  |
| PREVIOUS MENU                      | NORMAL SCREEN |  |  |  |

FIGURE 2-2 Maintenance Menu (below S/N MC15000-XX)

## 2.4.2.1 Calibrations

Calibrations should be performed at least once a year. Calibrations should also be performed after any preventive maintenance or repair of the **Trio** Monitor.

From the **MAINTENANCE** menu make the following selections to perform each specific calibration or check.

## **IBP Pressure Cal**

The purpose of this calibration is to ensure that the system gives you accurate measurements.

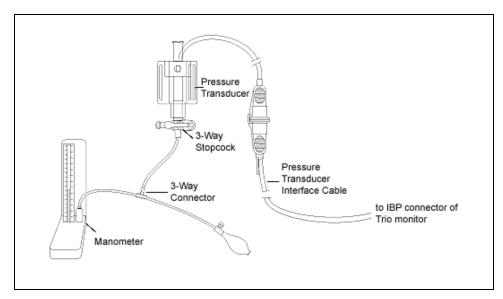



FIGURE 2-3 IBP Calibration

## WARNING: Never perform this procedure while patient is being monitored.

- 1. Connect a Pressure Transducer Interface Cable from a Pressure Transducer (Figure 2-3) to the IBP socket on the right side panel of the **Trio**
- 2. Open 3-Way Stopcock to atmosphere.
- **3.** Perform zeroing procedure by selecting the **IBP** parameter menu, then selecting **IBP ZERO** tile.
- 4. From IBP ZERO menu select IBP ZERO tile to zero the blood pressure channel.
- 5. Connect a Sphygmomanometer or a digital Manometer w/bulb to the Pressure Transducer via a T fitting.
- 6. Close the 3-way Stopcock.
- 7. Manually pump the Manometer to a static value of 100 mmHg and close valve on bulb.
- 8. From the MAINTENANCE menu, select IBP PRESSURE CAL.
- **9.** From **IBP PRESSURE CAL** menu, select the tile adjacent to **CAL VALUE** and set to 100 mmHg.

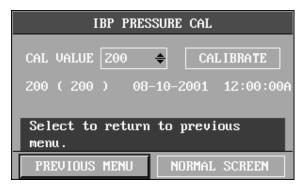



FIGURE 2-4 IBP Pressure Calibration Menu

**10.** Select **CALIBRATE**. The monitor will perform the calibration and display one of the following calibration completion messages.

| MESSAGE                   | DESCRIPTION                                                                                                                                                    |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SUCCESSFUL CALIBRATE      | Indicates Blood Pressure was calibrated successfully. No further action required.                                                                              |
| SENSOR OFF, FAIL          | Check that sensor is connected, then proceed with calibration. If message does not clear contact Customer Service.                                             |
| IN DEMO, FAIL             | Check that the monitor is not in DEMO mode. If message does not clear contact Customer Service.                                                                |
| PRESSURE OVER RANGE, FAIL | Check that you have selected appropriate transducer value<br>in IBP CAL, then proceed with calibration. If message does<br>not clear contact Customer Service. |

## NIBP CAL

Connect a test chamber (P/N 0138-00-0001-03) and a calibrated digital mercury manometer with bulb via T fitting to the NIBP quick connect fitting of the **Trio** Monitor (Figure 2-5.)

- 1. From the **MAINTENANCE** menu select **NIBP CAL**. The selected tile will now read **STOP CAL**. The user may select this tile at any time to stop the test.
- Using the bulb, inflate the pneumatic system so that the digital mercury manometer reads 0, 50 and 200 mmHg in turn. The difference between the indicated pressure of the digital mercury manometer and the indicated pressure in the NIBP parameter tile of the Trio Monitor should not exceed 3 mmHg. If it exceeds 3 mmHg, please contact a service technician.

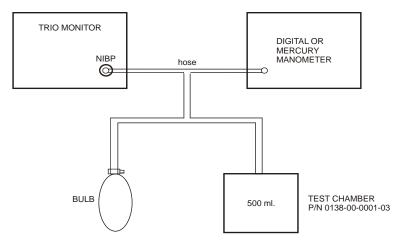



FIGURE 2-5 Diagram of NIBP Calibration

### **NIBP Pneumatic**

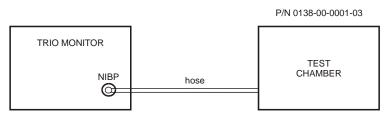
```
WARNING: The NIBP pneumatic test (specified in the EN 1060-1
standard) is used to determine if there are air leaks in the
NIBP airway. If the system displays the prompt that the
NIBP airway has air leaks, please contact the manufacturer
for repair.
```

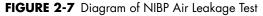
- Connect a test chamber (P/N 0138-00-0001-03) to the NIBP quick connect fitting on the Trio Monitor (Figure 2-7).
- From the MAINTENANCE menu, select NIBP PNEUMATIC. The NIBP pump will begin to run and the message STOP PNEUM will appear in the selected tile. The user may select this tile at any time to end the test.

| MAINTENANCE                        |               |  |  |
|------------------------------------|---------------|--|--|
| IBP PRESSURE CALIBRATE             | ERROR LOG     |  |  |
| NIBP CAL                           | FACTORY       |  |  |
| NIBP PNEUMATIC                     | SERIAL PORT   |  |  |
| ECG CAL                            | DEMO          |  |  |
| VERSION                            |               |  |  |
| Select to return to previous menu. |               |  |  |
| PREVIOUS MENU                      | NORMAL SCREEN |  |  |



**3.** The prompt **Pneum testing...** will appear at the bottom of the NIBP parameter area indicating that the system has started performing the pneumatic test.


**4.** The system will automatically inflate the pneumatic system to about 180 mmHg.


After approx. 20 seconds, the system will automatically deflate, marking the completion of the test.

If no message appears at the bottom of the NIBP parameter area, no air leaks exist.

If the message **PNEUMATIC LEAK** appears at the bottom of the NIBP parameter area, the NIBP module may have air leaks. The user should first check for loose connections.

After confirming connections, the user should repeat the pneumatic test. If the **PNEUMATIC LEAK** message still appears, please contact the manufacturer for repair.





## ECG Cal

- 1. Set ECG lead to I and ECG size to x1.
- From The MAINTENANCE menu select ECG CAL. The message CALIBRATION MODE will appear in red at the lower left of the ECG waveform area. The highlighted tile will now read STOP CAL. The user may select this tile at any time to end the test.
- **3.** A 1mV peak to peak square wave will appear in the ECG waveform area. This is the Cal Pulse.
- **4.** Measure the amplitude of the Cal Pulse with a metric ruler. The Cal Pulse should measure 1 cm +/-5%.
- 5. Set ECG size to x 2. Cal Pulse should measure 2 cm +/- 5%.
- 6. Set ECG size to x .25. Cal Pulse should measure 25 mm +/- 5%.
- 7. Set ECG size to x .5. Cal Pulse should measure 50 mm +/- 5%.
- 8. If any measurements are out of tolerance range, please contact the manufacturer for repair.

## 2.4.2.2 Technical Information and Settings

From the **MAINTENANCE** menu select each tile to access specific technical information or settings.

| Version: | This menu will display the current version of the unit's software. |
|----------|--------------------------------------------------------------------|
|----------|--------------------------------------------------------------------|

| VERSION                            |                     |  |  |
|------------------------------------|---------------------|--|--|
| HOST MODULE                        | Version 02.01.00    |  |  |
| HOST BOOT MODULE                   | Version 1.1         |  |  |
| ECG MODULE                         | Version 2.1         |  |  |
| NIBP MODULE                        | Version 4.0         |  |  |
| IBP MODULE                         | Version 1.1         |  |  |
| KEYPAD MODULE                      | Version 2.0         |  |  |
| RECORDER MODULE                    | Version 1.0         |  |  |
| SP02 MODULE                        | Version 01.08.01.00 |  |  |
|                                    |                     |  |  |
| Select to return to previous menu. |                     |  |  |
| PREVIOUS MENU                      | NORMAL SCREEN       |  |  |

FIGURE 2-8 Version Menu\*

\*Applies only to host software version 02.01.00 and greater.

#### Error Log:

This menu will display any system errors which may have occurred during normal operation of unit. **SCROLL** or **PRINT** this information by selecting the respective tiles

| ERROF                              | ł LOG                |  |  |
|------------------------------------|----------------------|--|--|
| 1.STARTUP TIME                     | 01-01-2000 02:10:29A |  |  |
| SCROLL‡                            | PRINT                |  |  |
| Select to return to previous menu. |                      |  |  |
| PREVIOUS MENU                      | NORMAL SCREEN        |  |  |

#### FIGURE 2-9 Error Log Menu\*

**Factory:** This menu allows the unit to be preconfigured at the factory. This menu is enabled with an access code, 762718, and should only be accessed as necessary by Customer Service Personnel or by trained Bio-medical technicians after replacing defective modules as a result of unit repair.

The Factory menu allows for configuration of:

- **Serial Port:** This menu allows the user to configure the DIAP baud rate of the serial output port. The choices are 9600 bps or 19200 bps.
  - Language (English, Spanish\*, French\*, German\*, Italian\*, Chinese\*).
  - Module Options (ECG, Resp, SpO<sub>2</sub>, 1ch.Temp, 2ch.Temp\*, NIBP, IBP, Recorder).

Selections are enabled or disabled by checking or unchecking the box which corresponds to each item in the menu.

## NOTE: IBP and 2ch. Temp should not be enabled simultaneously.

\*Not available for domestic units.

| FACTORY MAINTENANCE                   |  |
|---------------------------------------|--|
| LANGUAGE US ENGLISH -<br>MODULE SETUP |  |
| Select to return to previous menu.    |  |
| PREVIOUS MENU NORMAL SCREEN           |  |

#### FIGURE 2-10 Factory Menu

Demo:

This menu allows the unit to operate in Demonstration Mode. When the unit is operating in Demonstration mode the word **DEMO** will be displayed on the screen at all times. This menu is enabled with an access code and should be used for demonstration purposes only.

| INPUT          | DEMO | КЕЧ         |
|----------------|------|-------------|
|                |      |             |
| VEU.           | 2080 | •           |
| KEN:           | 2000 | ▼           |
| Select to re   | turn | to          |
| previous menu. |      |             |
| PREVIOUS MENU  | NOF  | RMAL SCREEN |

FIGURE 2-11 Demo Menu

## 2.4.3 Safety Tests

Equipment: Safety Analyzer (Dempsey Model 431 or equivalent).

## 2.4.3.1 Leakage Current Tests

### Case Leakage

- 1. Plug the line cord of the unit into the safety analyzer.
- **2.** Connect the case ground lead of the analyzer to the equipotential lug of the monitor (at rear of monitor).
- **3.** Perform the tests under the following conditions:
  - Case Grounded: Normal polarity Polarity with open neutral
  - **b.** Case Ungrounded Normal polarity Polarity with open neutral Reverse polarity
- Verify the current reading of the test is <100µA under normal operating conditions;</li>
   <300µA under a single fault condition for 120 VAC and <500µA under a single fault condition for 230 VAC.</li>

#### Patient Leakage

- **1.** Perform the test under the following conditions:
  - a. Lead to ground: Sink current patient circuit (Test V Model 431 Dempsey)
  - **b.** Patient leakage with line voltage on leads
- 2. Connect the ground wire from the safety analyzer to the equipotential lug of the monitor.
- **3.** Connect the ECG cable from the analyzer to the monitor.
- 4. On the safety analyzer, depress the APPLY 115 VAC button and note the reading.
- 5. Repeat the test for normal and open ground polarity combinations.
- **6.** Verify the current readings of the test are  $<50\mu$ A under a single fault condition.

## 2.5 Testing Each Parameter

Testing each parameter annually ensures the accuracy of the **Trio** Monitor. The following tests should be used for verification of operation only. The following tests should not be considered calibration procedures.

## 2.5.1 ECG and RESP

### 2.5.1.1 Test Equipment

• Patient Simulator

### 2.5.1.2 Test Procedures

- Use a 5L patient cable and lead wires to connect a calibrated patient simulator to the ECG connector of Trio.
- 2. Set ECG lead to lead II and ECG size to x1.
- 3. Check if ECG waveforms and RESP waveforms are displayed.
- 4. Set up the parameters of the simulator as follows:

HR=30 (gain × 4) RR=15

- 5. Check if the displayed ECG and RESP waveforms, HR and RR values are correct.
- **6.** Change the simulator configuration:

HR=240 RR=120

- 7. Check if the displayed ECG and RESP waveforms, HR and RR values are consistent with the parameters set up on the simulator.
- 8. Remove ECG lead. In this condition, the **Trio** should immediately alarm and display **ECG LEAD OFF** at the top right side of the Message Area.

### 2.5.2 NIBP

### 2.5.2.1 Test Equipment

- NIBP Simulator
- NIBP Dummy Cuff/Chamber

## 2.5.2.2 Test Procedures

- 1. Use polyurethane tubing to connect the **Trio** Monitor to a calibrated NIBP simulator and an NIBP Dummy Cuff/Test Chamber (P/N 0138-00-0001-03) via a T fitting.
- 2. Select Adult mode for both the NIBP simulator and the Trio Monitor.
- **3.** Select a group of blood pressure values within the measurement range on the NIBP simulator, such as:

Systolic = 90 Mean = 70 Diastolic = 60

- 4. From the NIBP SETUP menu set INTERVAL to 1 min.
- 5. Press the **NIBP** key on the front panel keypad.
- **6.** Allow the **Trio** Monitor to acquire NIBP readings for 10 minutes. Check readings for consistency. Reading should not deviate greater than +/- 5 mmHg.
- NOTE: The actual measured values of Trio Monitor may not be consistent with those selected on the simulator. This test is implemented only to confirm repeatability of dynamic NIBP readings. Accuracy can only be confirmed by performing the NIBP CAL outlined in section 2.4.2.1 of this Manual.
- 7. Change the NIBP simulator Systolic, Mean and Diastolic settings, and test again

## 2.5.3 SpO<sub>2</sub>

#### 2.5.3.1 Test Equipment

• SpO<sub>2</sub> simulator

#### 2.5.3.2 Test Procedures

- **1.** Connect the appropriate  $SpO_2$  probe to the  $SpO_2$  connector of the **Trio** Monitor.
- 2. Connect the SpO<sub>2</sub> probe to a calibrated SpO<sub>2</sub> simulator.
- 3. From the ECG SETUP menu set SOURCE to SpO2.
- **4.** Set up the parameters of SpO<sub>2</sub> simulator as following:

SpO<sub>2</sub>=98 PR=70

- 5. Check that the SpO $_2$  and PR values displayed on the **Trio** Monitor are equal to the SpO $_2$  simulator values +/- 2%.
- 6. Change the SpO<sub>2</sub> and PR values on the simulator.
- 7. Check that the displayed values on Trio are equal to the  $\text{SpO}_2$  simulator values +/- 2%.
- Remove SpO<sub>2</sub> sensor. Trio should immediately alarm and display the message SpO<sub>2</sub> SENSOR OFF in the message area in the top right corner of the display.

## 2.5.4 TEMP

## 2.5.4.1 Test Equipment

• Patient Simulator

### 2.5.4.2 Test Procedures

- 1. Connect a 400 series TEMP test cable to the TEMP connector of the **Trio** Monitor.
- 2. Connect the 400 series test cable to a calibrated Patient Simulator.
- **3.** Set the simulator to output a temperature of 34°C.
- **4.** Check that the displayed TEMP value on the **Trio** Monitor is  $34^{\circ}C + /-.1^{\circ}C$ .
- **5.** Change the simulator to output a value of 40°C.
- 6. Check that the displayed TEMP value on the **Trio** Monitor is  $40^{\circ}C + /-.1^{\circ}C$ .

#### 2.5.5 IBP

## 2.5.5.1 Test Equipment

• Patient Simulator

### 2.5.5.2 Test Procedures

- 1. Use a pressure transducer cable to connect a calibrated Patient Simulator to the **Trio** Monitor.
- Set the IBP sensitivity of the simulator to 5uv/v/mmHg, and the static IBP value to 0 mmHg. Set the IBP label to ART.
- **3.** Perform zero calibration for **IBP**. Select the **IBP PARAMETER** menu to open the **IBP SELECT** menu.
- 4. From the IBP SELECT menu select IBP ZERO.
- 5. From the IBP ZERO menu select IBP ZERO.
- 6. After the zero calibration is successful, return to the normal screen.
- 7. Set the Patient simulator to an IBP value of 100 mmHg.
- 8. From the MAINTENANCE menu, select IBP PRESSURE CAL.
- 9. From the IBP PRESSURE CAL menu, set CAL PRESSURE to 100 mmHg.

#### 10. From the IBP PRESSURE CAL menu, select CALIBRATE.

- **11.** After the calibration is successful, return to the normal screen.
- Set the Patient Simulator to the following IBP static values: 40 mmHg, 100 mmHg, and 200 mmHg.
- 13. Check that the unit displays the following values respectively: 40± 1 mmHg, 100± 2 mmHg, and 200± 4 mmHg.
- 14. Set the Patient Simulator to output an arterial wave with a value of 120/80.
- 15. Check that the unit displays the following values: Systolic 120 +/- 2%, Diastolic 80 +/- 2%.
- **16.** Confirm that the corresponding waveform is displayed correctly.
- **17.** Unplug the IBP sensor. **IBP SENSOR OFF** should be displayed in the Message Area in the top right corner of the display.

## $\overline{3.0}$ Parts

## 3.1 Exploded Views of the Trio Monitor

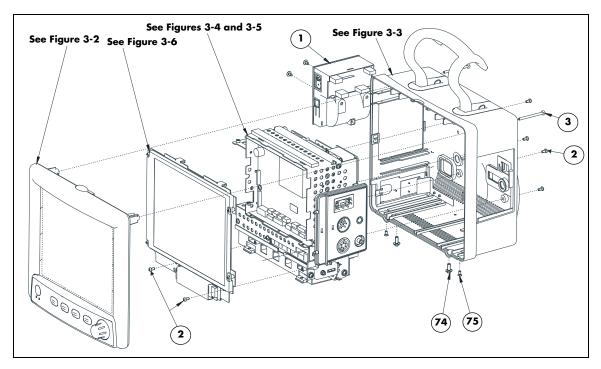



FIGURE 3-1 Main Sub-Assembly

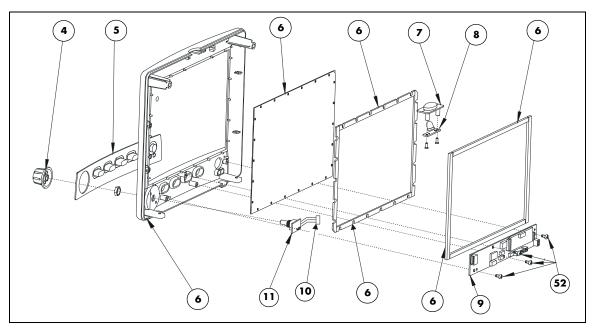



FIGURE 3-2 Front Panel Sub-Assembly

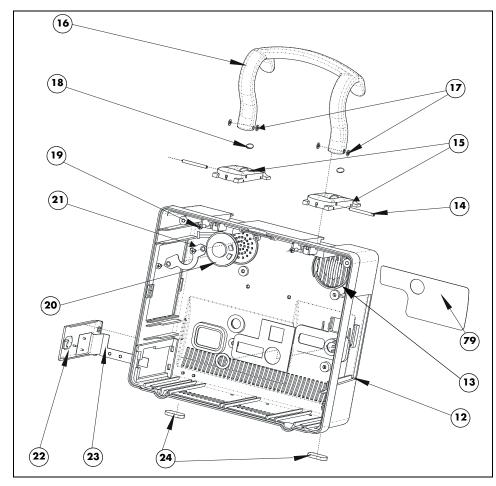
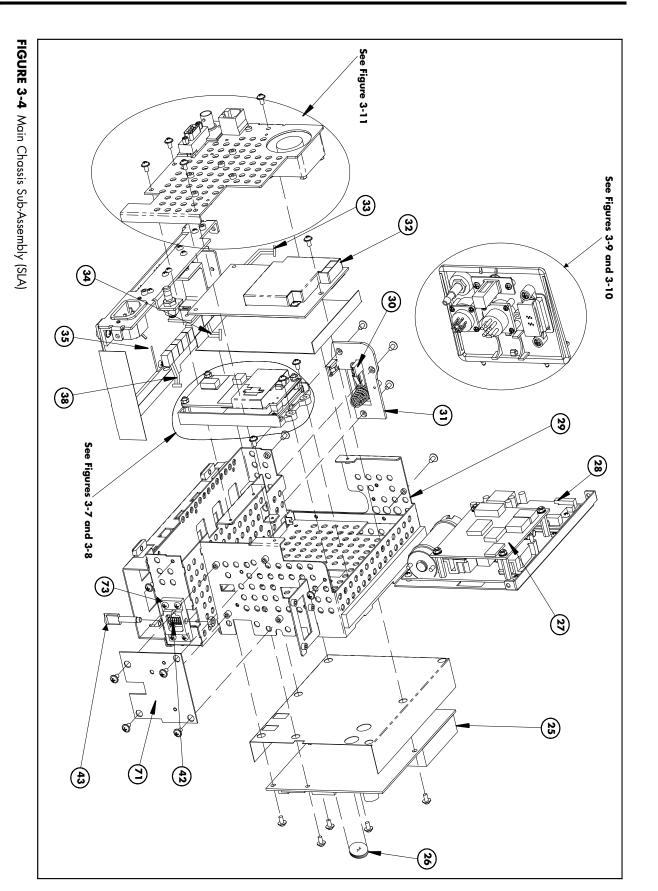




FIGURE 3-3 Rear Case Sub-Assembly



Parts



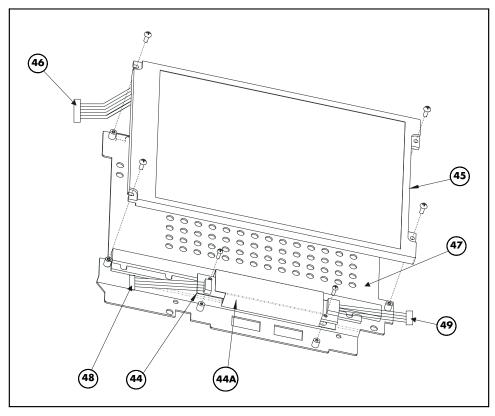



FIGURE 3-6 Display Sub-Assembly

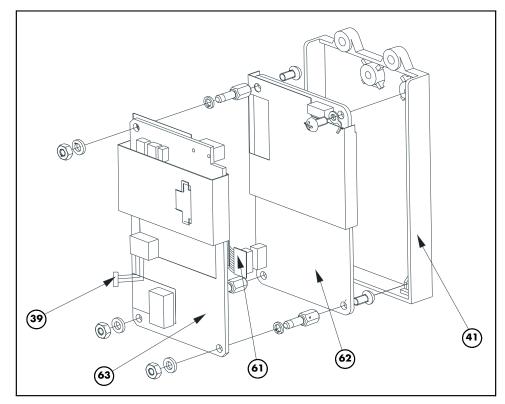
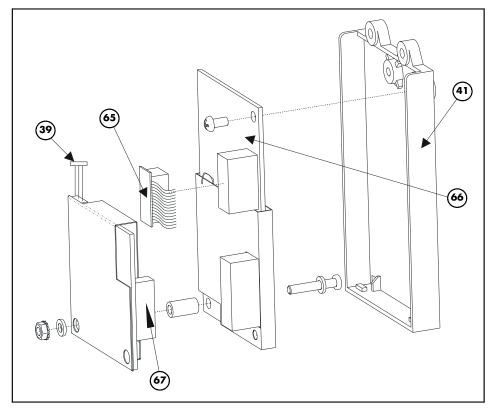




FIGURE 3-7 Masimo SPO<sub>2</sub> Sub-Assembly



**FIGURE 3-8** Nellcor SPO $_2$  Sub-Assembly

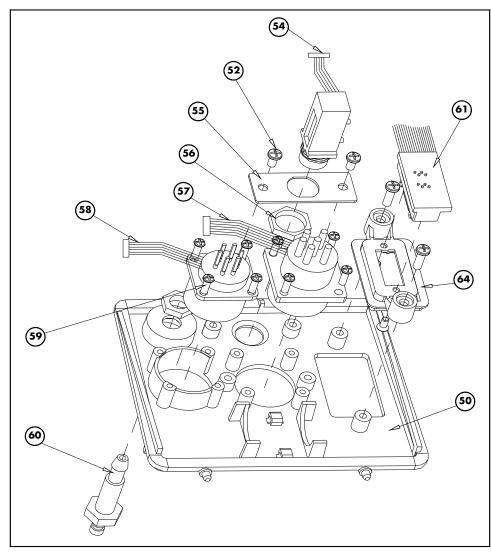



FIGURE 3-9 Right Side Panel Sub-Assembly (Masimo)

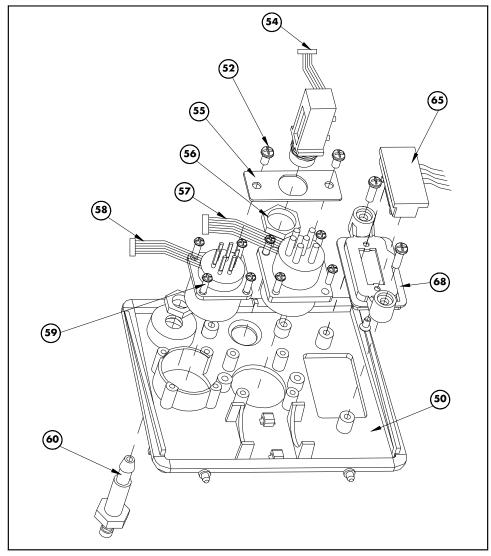



FIGURE 3-10 Right Side Panel Sub-Assembly (Nellcor)

0070-10-0591-01

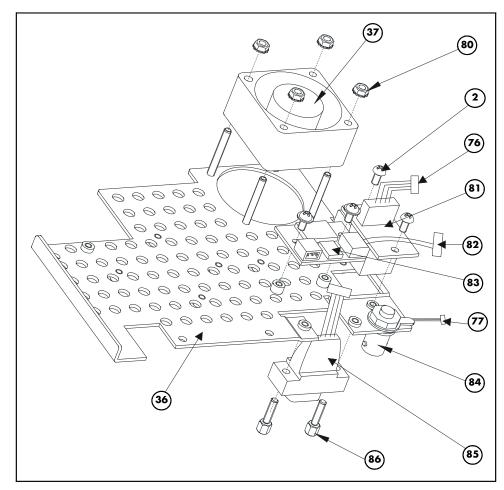



FIGURE 3-11 Rear Panel Sub-Assembly

## 3.2 Parts Listing

| REF. NUMBER | PART NUMBER                  | DESCRIPTION                                                                                                                                           |
|-------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1           | 0161-00-0023                 | Recorder                                                                                                                                              |
| NS          | 0380-00-0456                 | Recorder door                                                                                                                                         |
| NS          | 0380-00-0454                 | Recorder filler panel                                                                                                                                 |
| NS          | 0334-00-2665                 | Label, Paper Reload                                                                                                                                   |
| 2           | 0211-00-0143                 | Cross panhead screw M3 x 6                                                                                                                            |
| 3           | 0211-00-0142                 | Screw M3 x 40                                                                                                                                         |
| 4           | 0366-00-0110                 | Knob                                                                                                                                                  |
| 5           | 0330-00-0041-01              | Keypad overlay w/freeze key                                                                                                                           |
| 5           | 0330-00-0041-21              | Keypad overlay w/normal<br>screen                                                                                                                     |
| 6           | 0380-00-0455                 | Front bezel w/glare screen                                                                                                                            |
| 7           | 0380-00-0441                 | Alarm light lens                                                                                                                                      |
| 8           | 0671-00-0240                 | Alarm light panel PCB                                                                                                                                 |
| 9           | 0671-00-0237<br>0671-00-0064 | Keypad PCB (Freeze Key)<br>Keypad PCB (Normal Screen<br>Key) for Serial Number<br>MC05000-XX or Greater                                               |
| 10          | 0012-00-1488                 | Encoder Cable                                                                                                                                         |
| 11          | 0311-00-0133                 | Encoder PCB                                                                                                                                           |
| 12          | 0380-00-0439<br>0380-00-0524 | Back Housing, Trio w/RCD<br>for Serial Number lower than<br>MC05000-XX<br>Back Housing, Trio w/Serial<br>Port, Serial Number<br>MC05000-XX or Greater |
| 13          | 0354-00-0114                 | Fan washer                                                                                                                                            |
| 14          | 0226-00-0029                 | Dowel                                                                                                                                                 |
| 15          | 0367-00-0082                 | Handle shoe (mount)                                                                                                                                   |
| 16          | 0367-00-0081                 | Handle                                                                                                                                                |
| 17          | 0221-00-1027                 | Friction washer                                                                                                                                       |
| 18          | 0348-00-0203                 | Rubber bumper                                                                                                                                         |
| 19          | 0213-00-4013                 | Cross panhead tipless<br>tapping screw PT4 x 14                                                                                                       |
| 20          | 0012-00-1487                 | Speaker cable assembly                                                                                                                                |
| 21          | 0386-00-0292                 | Speaker Bracket                                                                                                                                       |
| 22          | 0380-00-0440                 | Battery door                                                                                                                                          |
| 23          | 0346-00-0050                 | Battery door tether                                                                                                                                   |
| 24          | 0348-00-0202                 | Foot                                                                                                                                                  |
| 25          | 0671-00-0056                 | CPU Board with 4 MB RAM                                                                                                                               |
| 26          | 0146-00-0078                 | 3V lithium battery                                                                                                                                    |
| 27          | 0104-00-0037                 | NIBP assembly                                                                                                                                         |
| 28          | 0671-00-0241                 | IBP PCB                                                                                                                                               |
| 29          | 0441-00-0178                 | Main chassis                                                                                                                                          |
| 30          | 0012-00-1494                 | Cable, charge assembly, lead<br>acid                                                                                                                  |

| REF. NUMBER | PART NUMBER  | DESCRIPTION                                                   |
|-------------|--------------|---------------------------------------------------------------|
| 31          | 0386-00-0293 | Bracket, charge assembly,<br>lead acid                        |
| 32          | 0671-00-0239 | ECG/RESP/TEMP PCB                                             |
| 33          | 0012-00-1491 | ECG/RESP/TEMP Cable                                           |
| 34          | 0012-00-1477 | Power Supply cable (J5/P12)                                   |
| 35          | 0671-00-0235 | Power Supply board (SLA)                                      |
| 36          | 0386-00-0333 | Rear Chassis Plate                                            |
| 37          | 0119-00-0197 | Fan only                                                      |
| 38          | 0012-00-1478 | Power Supply cable (J4/P11)                                   |
| 39          | 0012-00-1492 | SpO <sub>2</sub> Cable, to CPU board                          |
| 41          | 0406-00-0831 | SpO <sub>2</sub> Bracket                                      |
| 42          | 0214-00-0249 | Spring, batter lever                                          |
| 43          | 0367-00-0083 | Battery lever                                                 |
| 44          | 0671-00-0250 | HV Inverter PCB                                               |
| 44A         | 0349-00-0342 | Mylar Shield                                                  |
| 45          | 0160-00-0075 | 8.4"TFT Display screen                                        |
| 46          | 0012-00-1485 | Cable, TFT screen                                             |
| 47          | 0406-00-0823 | Display screen bracket                                        |
| 48          | 0012-00-1486 | Cable, HV Inverter PCB to PS                                  |
| 49          | 0012-00-1484 | Cable HV Inverter PCB to<br>Display                           |
| 50          | 0380-00-0443 | Connector panel                                               |
| 52          | 0213-00-4014 | Cross slotted panhead<br>tapping screw M3 x 6                 |
| 54          | 0012-00-1468 | TEMP cable                                                    |
| 55          | 0386-00-0295 | TEMP connector panel                                          |
| 56          | 0219-00-0007 | TEMP connector nut                                            |
| 57          | 0012-00-1466 | IBP cable                                                     |
| 58          | 0012-00-1465 | ECG cable                                                     |
| 59          | 0213-00-4015 | Cross slotted panhead<br>tapping screw M2.5 x 8               |
| 60          | 0103-00-0535 | Connector, 'RECTUS'                                           |
| 61          | 0012-00-1662 | Masimo flex cable                                             |
| 62          | 0671-00-0243 | MS-7 SpO <sub>2</sub> bd., Masimo<br>(below S/N 21963-18)     |
|             | 0671-00-0271 | MS-7 SpO <sub>2</sub> bd., Masimo<br>(S/N 21963-18 and above) |
| 63          | 0671-00-0246 | MS-7 isolated power bd.,<br>Masimo                            |
| 64          | 0380-00-0442 | Cable shroud, Masimo                                          |
| 65          | 0012-00-1661 | Nellcor SpO <sub>2</sub> connector., Trio                     |
| 66          | 0671-00-0066 | Nell-3 SpO <sub>2</sub> bd., Nellcor                          |
| 67          | 0671-00-0247 | Isolated power bd., Nellcor                                   |
| 68          | 0380-00-0444 | Cable shroud, Nellcor                                         |

| REF. NUMBER    | PART NUMBER      | DESCRIPTION                                                     |
|----------------|------------------|-----------------------------------------------------------------|
| 69             | 0671-00-0051     | Power Supply PCB, Lithium<br>Ion battery option                 |
| 70             | 0386-00-0303     | Charge Assembly, Lithium Ion battery option                     |
| 71             | 0436-00-0217     | Recorder mounting plate                                         |
| 72             | 0441-00-0180     | Main chassis, Lithium Ion<br>battery option                     |
| 73             | 0380-00-0483     | Base, battery latch                                             |
| 74             | 0211-00-1038     | Screw, M4x10, Phillips, Pan<br>Head                             |
| 75             | 0211-24-0306     | Screw, M3x6 Phillips, Flat<br>Head                              |
| 76             | 0012-00-1496     | Cable, CPU board to Ethernet                                    |
| 77             | 0012-00-1497     | Cable, CPU board to Analog<br>Out                               |
| 78             | 0221-00-0142     | Adjustment washer, Lithium<br>Ion battery option                |
| 79             | 0334-00-2634-03  | Label, Rear info                                                |
| 80             | 0220-00-0098     | Nut w/captive lock washer,<br>M3                                |
| 81             | 0671-00-0069     | Ethernet port board                                             |
| 82             | 0012-00-1659     | Cable Assembly, converter board to CPU board                    |
| 83             | 0671-00-0068     | Converter board, Serial Port                                    |
| 84             | 0136-00-0470     | BNC socket, Analog Out                                          |
| 85             | 0012-00-1658     | Cable assembly, Serial Port                                     |
| 86             | 0217-00-0038     | Stud screw, Serial Port                                         |
| See FIGURE 4-1 | 0012-00-1489     | Cable, alarm to keyboard                                        |
| See FIGURE 4-1 | 0012-00-1490     | Cable, Recorder to PS board                                     |
| See FIGURE 4-1 | 0012-00-1493     | Cable, Recorder to CPU<br>board                                 |
| See FIGURE 4-1 | 0012-00-1495     | Cable, CPU board to VGA                                         |
| See FIGURE 4-1 | 0012-00-1499     | Cable, CPU board to NIBP<br>Module                              |
| See FIGURE 4-1 | 0012-00-1500     | Cable, CPU board to<br>Keyboard                                 |
| N/S            | 0334-00-2627-001 | Parameter Connector panel<br>overlay w/Masimo IBP               |
| N/S            | 0334-00-2627-004 | Parameter Connector panel overlay w/Masimo SPO <sub>2</sub>     |
| N/S            | 0334-00-2627-009 | Parameter Connector panel<br>overlay w/Nellcor IBP              |
| N/S            | 0334-00-2627-012 | Parameter Connector panel<br>overlay w/Nellcor SPO <sub>2</sub> |

# **4.0** *Repair Information*

## 4.1 Introduction

This chapter of the Service Manual provides the necessary technical information to perform repairs to the instrument. The most important prerequisites for effective troubleshooting are a thorough understanding of the instrument functions as well as an understanding of the theory of operation. This page intentionally left blank.

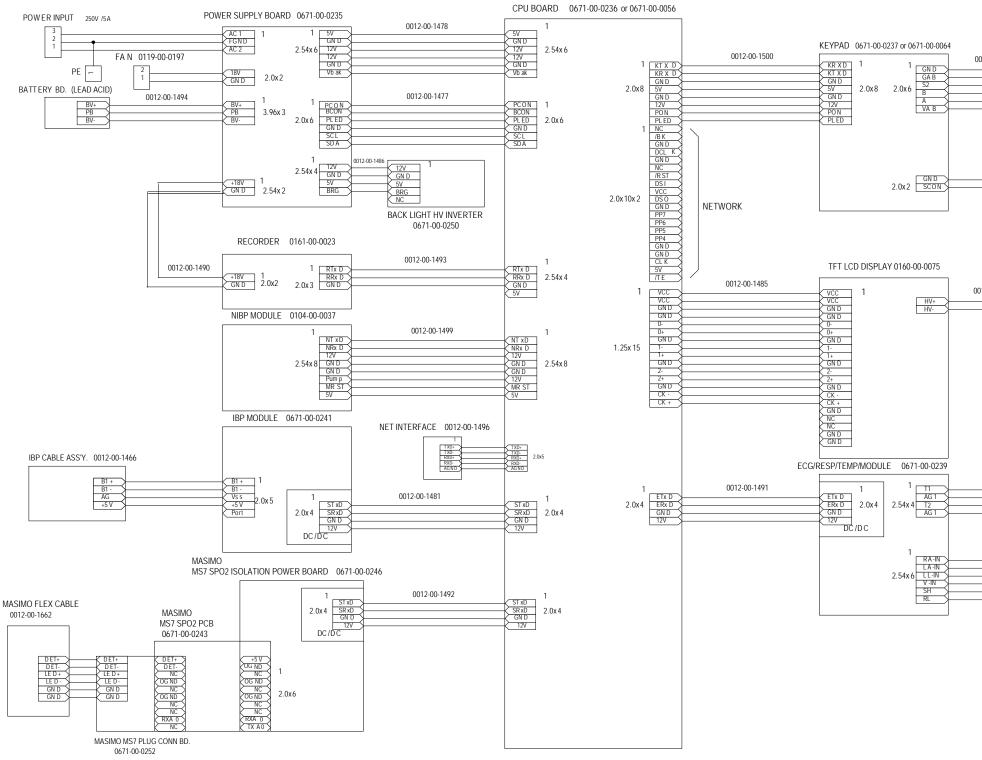



FIGURE 4-1 Trio Signal Connection Diagram (Masimo SET®)

| 0012-00-1488 | ENCODER 0311-00-0133                   |
|--------------|----------------------------------------|
|              | GN D<br>GA B<br>S2<br>A<br>VA B<br>Cx6 |

SPEAKER ASS'Y (w/cable) 0012-00-1487

#### BACK LIGHT HV INVERTER 0671-00-0250

| 012-00-1484 |  |
|-------------|--|
|             |  |

| 4 | 0071-00-0230 |  |  |
|---|--------------|--|--|
| · | HV+          |  |  |
|   | HV-          |  |  |
|   |              |  |  |
|   |              |  |  |
|   |              |  |  |

#### SINGLE TEMP CABLE ASS'Y 0012-00-1468

|     | T1<br>AG 1<br>T2<br>AG 1              |
|-----|---------------------------------------|
| ECO | G CABLE ASS'Y 0012-00 1465            |
|     | RA-IN<br>LA-IN<br>LL-IN<br>V-IN<br>SH |

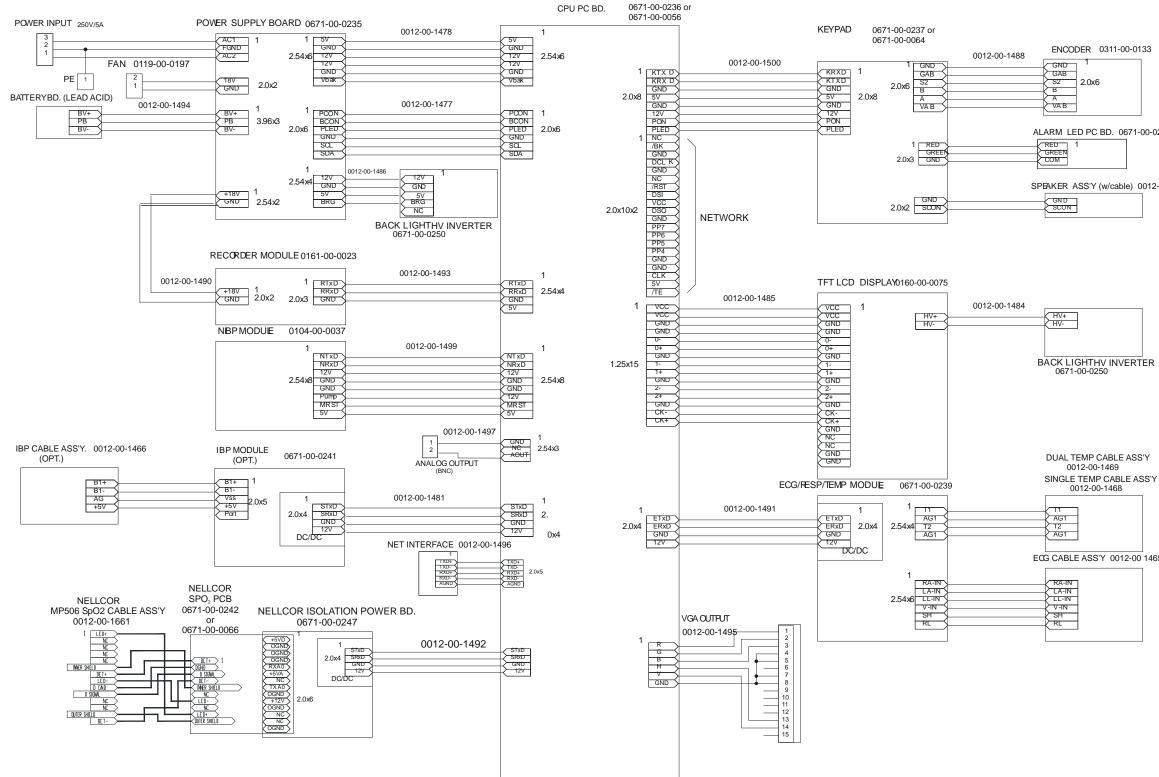



FIGURE 4-2 Trio Signal Connection Diagram (Nellcor)

| 2-00-1488 | ENCODER 0311-00-0133                 |
|-----------|--------------------------------------|
|           | GND 1<br>GAB<br>S2<br>A<br>A<br>VAB  |
|           | ALARM LED PC BD. 0671-00-0240        |
| S         | SPEAKER ASS'Y (w/cable) 0012-00-1487 |

DUAL TEMP CABLE ASS'Y

| AG1<br>T2 |
|-----------|
| AG1       |

ECG CABLE ASS'Y 0012-00 1465

| RA-IN 1 |
|---------|
|         |
|         |
| V-IN    |
| SH I    |
|         |
|         |
|         |

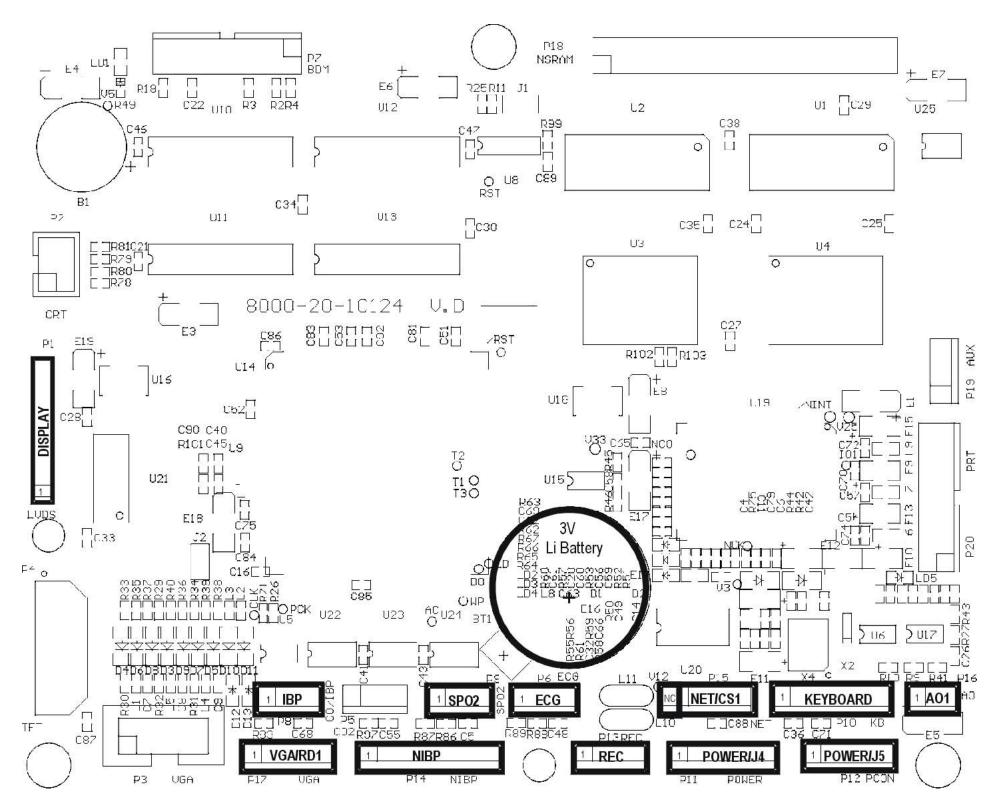



FIGURE 4-3 CPU PCB Connector Reference

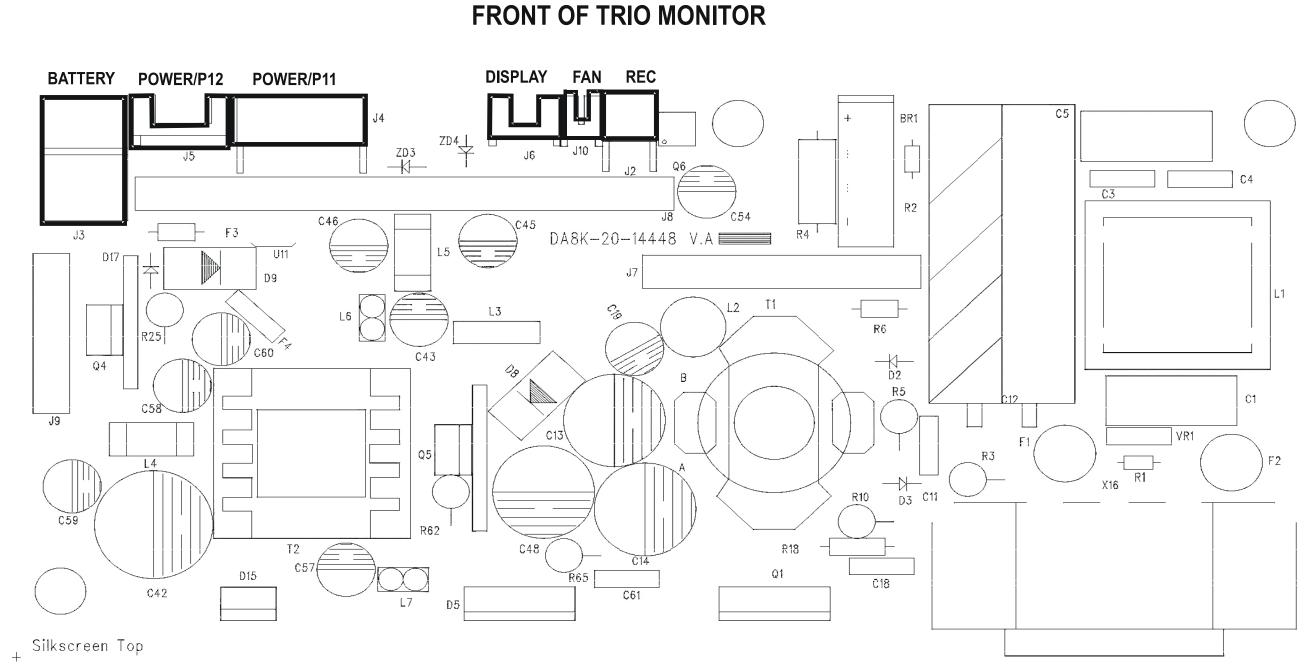



FIGURE 4-4 Power Supply PCB (Lead Acid Battery) Connector Reference

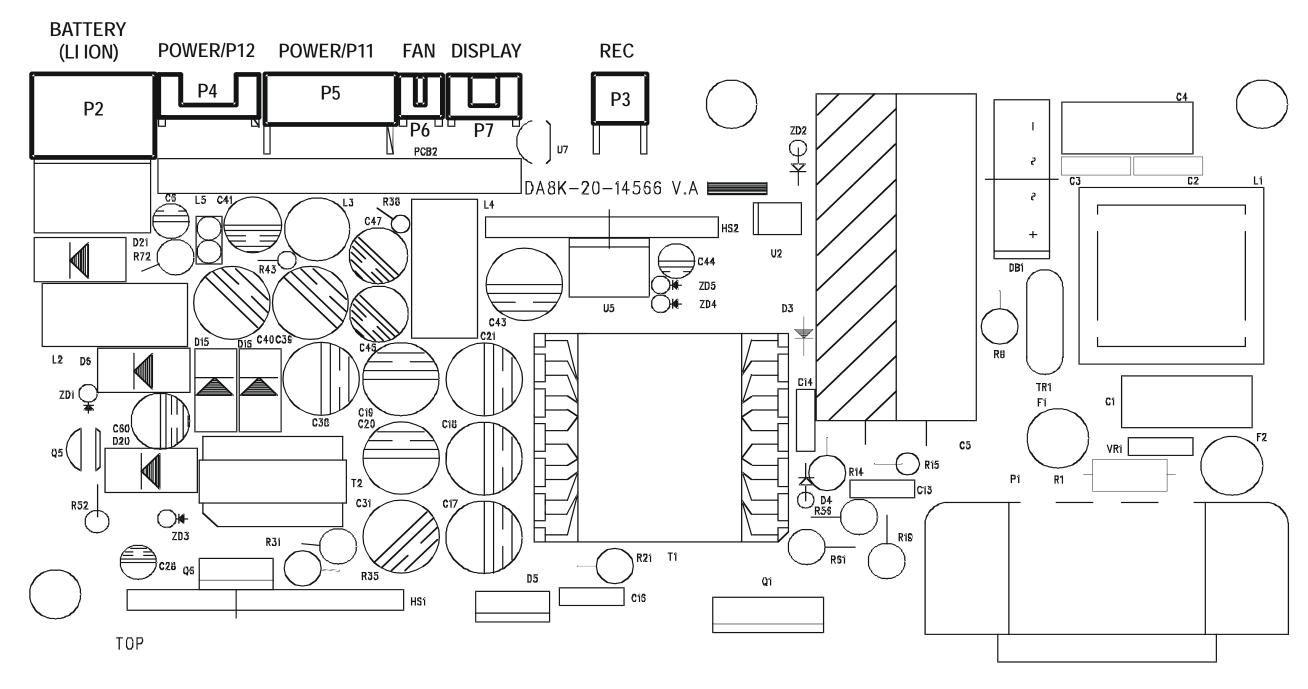



FIGURE 4-5 Power Supply Pcb (Lithium Ion Battery) Connector Reference

This page intentionally left blank.

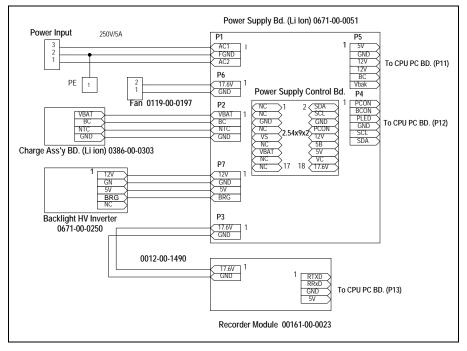



FIGURE 4-6 Power supply board (LI Ion battery) signal connection diagram

## Serial Port Converter Board P/N 0671-00-0068

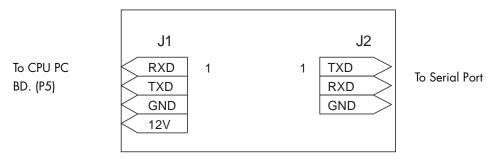
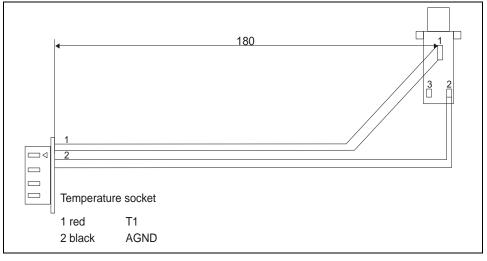




FIGURE 4-7 Serial Port Converter board signal connection diagram

## 4.2 Single Temp Cable Assembly

## P/N 0012-00-1468





## 4.3 ECG Cable Assembly

## P/N 0012-00-1465

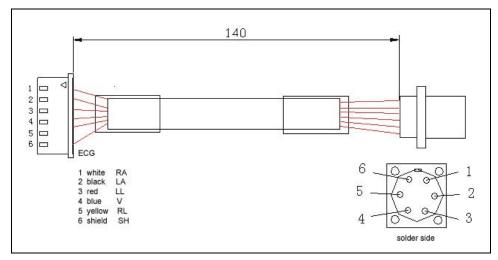



FIGURE 4-9 ECG Cable Assembly

## 4.4 Troubleshooting

During transportation, storage and use of the **Trio** Monitor, various factors may result in **Trio** Monitor failures or affect normal operation of the device. Some of these factors include: Unstable network voltage, changing environmental temperature, physical damage or component aging. During failure conditions, qualified service technicians should perform module-level service according to the failure classification listed in the table below. Modulelevel service is defined as analysis, replacement or test of any module or modules that may be determined defective within the device. These modules include: Power board, main control board, TFT assembly, cable or parameter module. The repair operation must be conducted under specific environmental conditions by a qualified service technician with access to special test equipment.

## 4.4.1 Module-level Troubleshooting

#### **Device Failures**

| MESSAGE/PROBLEM                                                                                                               | REASON                                                                         | SOLUTION                                                                                             |
|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| No display after power-on                                                                                                     | Blown fuse                                                                     | Replace fuse                                                                                         |
| Power indicator does not light                                                                                                | Power Supply defective                                                         | Replace Power Supply                                                                                 |
| Fan does not run                                                                                                              | Defective component or PCB                                                     | Replace component or PCB                                                                             |
| No display after power-on or<br>black screen during operation,<br>however, power indicator lights<br>on and fan runs normally | Main control board failure or<br>display failure                               | Replace CPU PCB or Display<br>to confirm failure                                                     |
| Characters are displayed<br>normally, however waveforms<br>are displayed intermittently                                       | Data communication error<br>between main control board<br>and parameter module | Based on error prompt,<br>replace CPU PCB, ribbon<br>cable or parameter module to<br>confirm failure |
| An operation or measurement function is disabled                                                                              | CPU PCB or corresponding<br>parameter PCB damage                               | Examine CPU PCB and<br>corresponding parameter<br>PCB                                                |
| Device responds slowly                                                                                                        | Poor performance of power<br>board                                             | Check power supply and grounding system                                                              |
|                                                                                                                               |                                                                                | Replace Power Supply board                                                                           |
|                                                                                                                               | Poor performance of main control board                                         | Replace CPU PCB                                                                                      |
|                                                                                                                               | Poor connection of power<br>supply or CPU PCB                                  | Replace or repair connectors                                                                         |

#### **Display Failures**

| MESSAGE/PROBLEM                                                                            | REASON                  | SOLUTION                                                                           |
|--------------------------------------------------------------------------------------------|-------------------------|------------------------------------------------------------------------------------|
| When powering on the device,<br>there is no display or display<br>goes black during normal | HV inverter PCB damage  | Connect external VGA<br>display to confirm the Failure,<br>replace HV inverter PCB |
| operation                                                                                  | Defective display cable | Repair or replace cable                                                            |
|                                                                                            | Damage of CPU PCB       | Replace CPU PCB                                                                    |

| MESSAGE/PROBLEM                     | REASON                                                       | SOLUTION                                      |
|-------------------------------------|--------------------------------------------------------------|-----------------------------------------------|
| Keys or Navigator™ knob<br>disabled | Keypad or Navigator knob is<br>damaged                       | Replace keypad or Navigator<br>knob           |
|                                     | Keypad cable is damaged                                      | Replace or repair keypad<br>cable             |
| Sound is distorted or mute          | Keypad failure                                               | Replace keypad                                |
|                                     | Speaker or cable failure                                     | Replace speaker or cable                      |
| Recorder will not print             | Recorder has no paper or roller<br>lever is not pressed down | Install paper and press down the roller lever |
|                                     | Recorder failure                                             | Replace the recorder                          |
|                                     | Recorder cable is damaged                                    | Replace or repair the recorder cable          |
| Record paper skews                  | Bad recorder paper installation or positioning               | Adjust the installation of recorder paper     |

### Operation, Recording

### **Power Board Failure**

| MESSAGE/PROBLEM                                                                                                                                | REASON                           | SOLUTION                        |
|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------|
| Fuse blows upon power-on                                                                                                                       | Short-circuit in power supply or | Replace module or PCS           |
|                                                                                                                                                | other module                     | Check after power-on            |
| Fuse blows when all loads are disconnected                                                                                                     | Power Supply failure             | Replace Power Supply            |
| Fuse blows after connecting a specific PCB                                                                                                     | PCB may be defective             | Replace PCB                     |
| Indicators of power and main<br>control board illuminated,<br>however, the fan does not run<br>and the keypad indicator does<br>not illuminate | +12V DC power is damaged         | Replace the power supply<br>PCB |
| Indicators of power and main<br>control board do not illuminate,<br>however, the fan runs normally<br>and the keypad indicator<br>illuminates  | +5V DC power is damaged          | Replace the power supply<br>PCB |

| MESSAGE/PROBLEM                                    | REASON                                                           | SOLUTION                                                            |
|----------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------------|
| No ECG waveform                                    | Poor connection of ECG electrodes                                | Use new electrodes to ensure<br>good contact                        |
|                                                    | No square waveform exists<br>during CAL self-test                | Replace ECG/RESP module                                             |
|                                                    | RL electrode is disconnected                                     | Connect RL electrode                                                |
|                                                    | ECG/RESP module is damaged                                       | Replace ECG/RESP module                                             |
| ECG waveform interference or abnormal ECG waveform | Electrodes are connected incorrectly                             | Correctly connect electrodes                                        |
|                                                    | There are disconnected or<br>intermittent electrodes             | Remove any electrodes that are not used                             |
|                                                    | AC power has no grounding<br>plug                                | Use grounded power cord<br>and outlet                               |
|                                                    | ECG filter mode is incorrect                                     | Select appropriate filter mode                                      |
|                                                    | ECG/RESP module is damaged<br>or defective                       | Replace ECG/RESP module                                             |
| No RESP waveform or<br>abnormal RESP waveform      | Electrodes are connected<br>incorrectly                          | Use RA-LL (R and F)<br>electrode, connect correctly                 |
|                                                    | Patient is moving constantly                                     | Keep patient calm                                                   |
|                                                    | ECG/RESP module is damaged<br>or defective                       | Replace ECG/RESP module                                             |
| TEMP value is incorrect                            | Temp sensor is poorly<br>connected                               | Reconnect TEMP sensor                                               |
| HR value is inaccurate                             | ECG waveform intermittent                                        | Check ECG connections and reconnect                                 |
| NIBP cuff cannot be inflated                       | Airway is occluded or has<br>leakage                             | Adjust or repair the airway                                         |
| Blood pressure intermittently cannot be measured   | Cuff becomes loose or patient is moving                          | Keep the patient calm. Re-<br>wrap the cuff correctly and<br>safely |
| Blood pressure measurement is                      | Cuff size does not fit the patient                               | Use the appropriate size cuff                                       |
| inaccurate                                         | NIBP module defective                                            | Replace NIBP module                                                 |
| No SpO <sub>2</sub> waveform                       | SpO <sub>2</sub> Sensor or SpO <sub>2</sub> module<br>is damaged | Replace the sensor to confirm the failure                           |
| SpO <sub>2</sub> waveform interference             | Patient is moving                                                | Keep the patient calm                                               |
|                                                    | Ambient light is very intensive                                  | Dim the ambient lighting                                            |
| SpO <sub>2</sub> value is inaccurate               | Dye has been injected into<br>patient's body                     | Remove all dyes before<br>performing measurement                    |

#### Parameter Failure

## 4.5 Disassembly Instructions

Before disassembling the unit, perform the following:

- Power down the unit and remove the line cord
- Remove all cable assemblies from the right side and rear of the unit
- Remove any batteries that were installed
- Perform all work on a properly grounded station

#### CAUTION: To ensure continued use of the Factory Defaults when the unit is powered off and on, save the Factory Defaults as the User Default Configuration after reassembly.

### 4.5.1 Tools Needed

- Phillips Screwdriver
- Slotted Screwdriver
- Awl or similar tool

## 4.5.2 Removal of the Front Housing

- 1. Remove two (2) 3 x 40 mm Phillips panhead screws at top right and left of rear housing.
- **2.** Remove two (2) 3 x 5 mm Phillips flathead screws at front right and left of bottom housing.
- 3. Carefully pull Front Housing Assembly forward and remove from rear housing.
- **4.** Disconnect cable assemblies from connectors P3 (speaker cable assembly) and P4 (CPU PCB to Keypad PCB cable assembly) of Keypad PCB.

## 4.5.3 Removal of Display

- 1. With Front Housing Assembly removed, place monitor face up on a flat surface.
- Remove four (4) 2.5 x 6 mm Phillips panhead self tapping screws at corners of the 8.4" TFT display.
- **3.** Carefully lift display from mounting bracket.
- **4.** Disconnect cable assembly from CN2 on the HV inverter PCB, and ribbon cable at upper left of display.

## 4.5.4 Removal of Thermal Printhead Recorder

- 1. Open recorder door and remove paper roll, if installed.
- **2.** Remove two (2) 3 x 6 mm Phillips panhead screws from rear of recorder paper compartment.
- **3.** Insert flat blade of screwdriver into tab slots at center right and center left of recorder paper compartment.
- **4.** Gently move tabs in toward center of paper compartment while pushing recorder out from rear housing of unit.

## 4.5.5 Removal of PCB Chassis Assembly

- 1. Remove four (4) 3 x 6 mm Phillips panhead screws from rear housing.
- 2. Remove two (2) 4 x 10 mm Phillips panhead screws from bottom of rear housing.
- **3.** Carefully pull entire PCB chassis assembly, along with right side parameter panel, forward until it is completely removed from the rear housing.
- **4.** Disconnect cable assemblies from connectors JP1 and JP3 of thermal printhead Recorder.

## 4.5.6 Removal of Display Mounting Plate

- 1. Remove two (2) 3 x 6 mm Phillips panhead screws at left and right of HV inverter PCB.
- **2.** Gently lift display mounting plate up from chassis assembly so that locking tabs at top of mounting plate clear their slots.
- 3. Pull display mounting plate forward and away from chassis assembly.
- **4.** Disconnect cable assemblies from P1 of CPU PCB (display cable assembly) and CN2 of HV inverter PCB.

### 4.5.7 Replacement of 3V Lithium Cell Battery

- 1. With the display mounting plate removed, the CPU PCB is accessible. A 3volt Lithium cell battery is installed in the battery socket at the lower center of the CPU PCB.
- **2.** Using a small flat blade screwdriver, push the tab (located at the 7 o'clock position on the battery holder) toward outer edge of battery socket.
- **3.** The 3 volt lithium battery should pop out of holder. Remove and discard battery.
- **4.** With positive (+) terminal facing up, push new 3 volt Lithium battery into battery holder until tab locks battery in place.

## 4.5.8 Removal of Power Supply Assembly

- Remove two (2) 3 x 6 mm Phillips panhead screws at front left and front center of PCB chassis assembly.
- **2.** Remove two (2) 3 x 6 mm Phillips panhead screws lower left side rear and lower right side rear of PCB chassis assembly.
- 3. Remove cable assemblies from J2, J10, J4, J5, and J3 of Power Supply PCB.
- **4.** Pull power supply assembly straight back from rear of PCB chassis assembly.

### 4.5.9 Removal of PCB Chassis Rear Panel Plate

- 1. Remove four (4) 3 x 6 mm Phillips panhead screws from rear panel of PCB chassis.
- 2. Remove rear panel plate. This will allow access to NIBP Module and optional IBP PCB.

## 4.5.10 Removal of NIBP/IBP PCB Mounting Plate

- 1. Remove two (2) 3 x 6 mm Phillips panhead screws at upper right side center and upper left side center of PCB chassis assembly.
- **2.** Remove one (1) 3 x 6 mm Phillips panhead screw at lower left of NIBP/IBP pcb mounting plate.
- 3. If IBP PCB is installed, remove cable assemblies from PD1 and P2 of IBP PCB.
- **4.** Remove cable assembly from P1 of NIBP PCB. Remove polyurethane hose from Rectus fitting on parameter panel.
- Lift NIBP/IBP PCB Mounting Plate up and out to remove. This will allow access to ECG/ RESP/TEMP PCB and SpO<sub>2</sub> PCB.

## 4.5.11 Removal of Handle

- 1. Remove two (2) 4 x 14 mm Phillips panhead self tapping screw at top inside front of rear housing.
- **2.** Push handle and handle shoes toward rear of rear housing until they are removed from housing.
- 3. Use an awl or similar tool to push the pins through the shoes releasing the handle.

## 4.6 ECG Cable ESIS and Non ESIS

## P/N 0012-00-1255-XX

- 05 10' Straight ESIS

- 01 10' Straight Non ESIS - 02 20' Straight Non ESIS

- 06 20' Straight ESIS

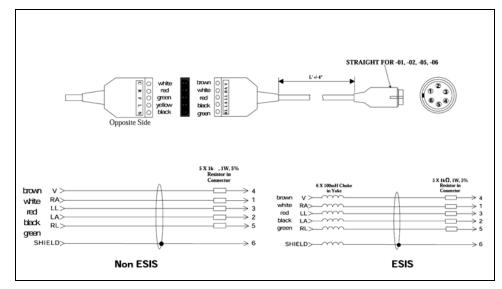



FIGURE 4-5 ECG Cable ESIS and Non ESIS (P/N 0012-00-1255-XX)

ANSI/AAMI EC53-1995

IEC CONVENTIONAL STANDARD

| LEAD           | COLOR | LEAD          | COLOR  |
|----------------|-------|---------------|--------|
| V              | Brown | Chest (C)     | White  |
| Right Arm (RA) | White | Right Arm (R) | Red    |
| Left Leg (LL)  | Red   | Left Leg (F)  | Green  |
| Left Arm (LA)  | Black | Left Arm (L)  | Yellow |
| Right Leg (RL) | Green | Right Leg (N) | Black  |

## 4.7 ECG Shielded Lead Wires

## P/N 0012-00-1262-XX

- 01 18" pinch 5 lead set Domestic
- 02 24" pinch 5 lead set Domestic
- 03 40" pinch 5 lead set Domestic
- 04 18" pinch 5 lead set International
- 05 24" pinch 5 lead set International
- 06 40" pinch 5 lead set International
- 13 3/40" 2/60" pinch 5 lead set Domestic
- 14 3/40" 2/60" pinch 5 lead set International
- 07 18" pinch 3 lead set Domestic
- 08 24" pinch 3 lead set Domestic
- 09 40" pinch 3 lead set Domestic
- 10 18" pinch 3 lead set International
- 11 24" pinch 3 lead set International
- 12 40" pinch 3 lead set International

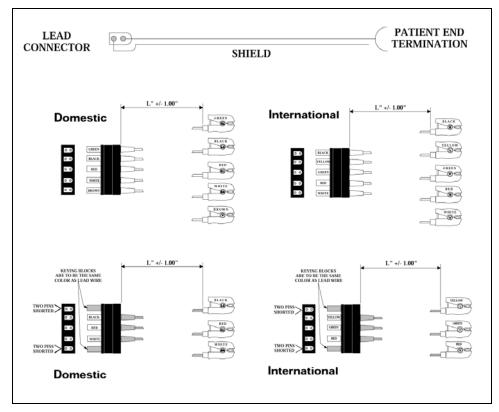



FIGURE 4-6 ECG Shielded Lead Wires (P/N 0012-00-1262-XX)

## P/N 0012-00-1261-XX

- 01 18" snap 5 lead set Domestic
- 02 24" snap 5 lead set Domestic
- 03 40" snap 5 lead set Domestic
- 04 18" snap 5 lead set International
- 05 24" snap 5 lead set International
- 06 40" snap 5 lead set International
- 13 3/40" 2/60" snap 5 lead set Domestic
- 14 3/40" 2/60" snap 5 lead set International
- 07 18" snap 3 lead set Domestic
- 08 24" snap 3 lead set Domestic
- 09 40" snap 3 lead set Domestic
- 10 18" snap 3 lead set International
- 11 24" snap 3 lead set International
- 12 40" snap 3 lead set International

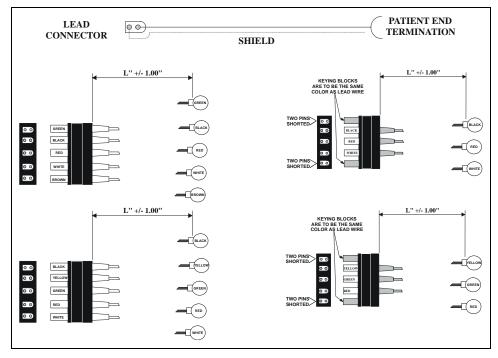



FIGURE 4-7 ECG Shielded Lead Wires (P/N 0012-00-1261-XX)

## Trio Wall Mounts and Rolling Stand

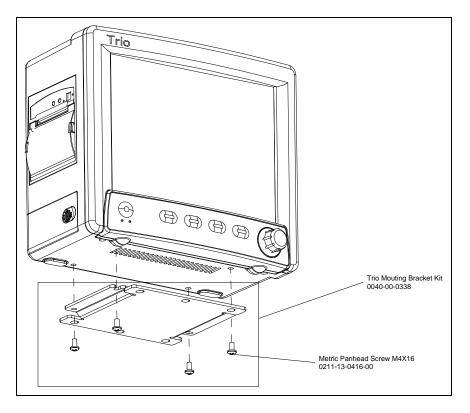



FIGURE 4-8 Mounting bracket kits

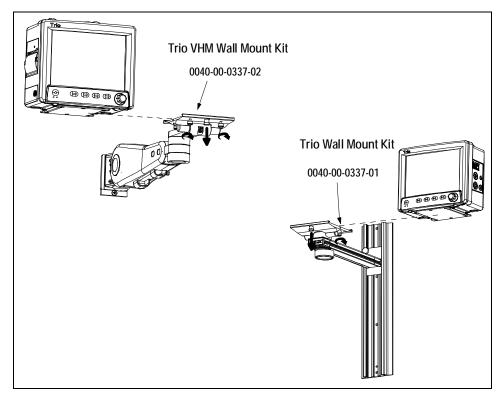



FIGURE 4-9 Mounting bracket kits

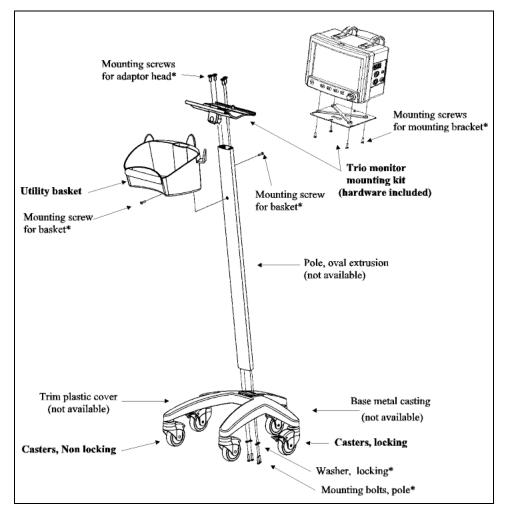



FIGURE 4-10 Trio roll stand

#### **Replacement Parts, Trio Rolling Stand**

| DESCRIPTION               | PART NUMBER     |
|---------------------------|-----------------|
| Trio rolling stand, value | TRIOROLLSTD     |
| Trio monitor mounting kit | 0406-00-0856-01 |
| Casters, Non locking      | 0401-00-0045    |
| Casters, Locking          | 0401-00-0046    |
| Utility basket            | 0202-00-0166    |

\* Included in Trio Monitor Mounting Kit.

# 5.0 Appendix

# 5.1 System Alarm Prompts

| PROBLEM/MESSAGE         | REASON                                                                                              | SOLUTION                                                                                                                                          |
|-------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| BATTERY VOLTAGE TOO LOW | When battery voltage is too<br>low, the monitor will<br>automatically shut down within<br>5 minutes | Use AC power supply                                                                                                                               |
| ECG WEAK SIGNAL         | The patient's ECG signal is too<br>weak                                                             | Check if the electrodes and<br>lead wires are connected<br>correctly. Check the current<br>condition of the patient.                              |
| NO PULSE                | The patient's pulse signal is too<br>weak or non-existent                                           | Check the connection of the<br>sensor. Check the current<br>condition of the patient.                                                             |
| PNP                     | The pacemaker is not paced                                                                          | Check the connection of the<br>pacemaker. Check the<br>connection of electrodes and<br>lead wires. Check the current<br>condition of the patient. |
| PNC                     | No pacemaker signal is captured                                                                     | Check the connection of the<br>pacemaker. Check the<br>connection of electrodes and<br>lead wires. Check the current<br>condition of the patient. |
| ECG LEAD OFF            | ECG lead is not connected correctly                                                                 | Check the connection of ECG<br>lead wires                                                                                                         |
| ECG V LEAD OFF          | The V lead wire of ECG is not connected correctly                                                   | Check the connection of V<br>lead wire                                                                                                            |
| ECG LL LEAD OFF         | The LL lead wire of ECG is not connected correctly                                                  | Check the connection of LL<br>lead wire                                                                                                           |
| ECG LA LEAD OFF         | The LA lead wire of ECG is not connected correctly                                                  | Check the connection of LA<br>lead wire                                                                                                           |

XX represents all the parameter modules in the system such as ECG, NIBP, SpO<sub>2</sub>, IBP module, etc.

| PROBLEM/MESSAGE                           | REASON                                                                               | SOLUTION                                                                                                      |
|-------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| ECG RA LEAD OFF                           | The RA lead wire of ECG is not<br>connected correctly                                | Check the connection of RA<br>lead wire                                                                       |
| ECG C LEAD OFF                            | The C lead wire of ECG is not<br>connected correctly                                 | Check the connection of C<br>lead wire                                                                        |
| ECG F LEAD OFF                            | The F lead wire of ECG is not<br>connected correctly                                 | Check the connection of F<br>lead wire                                                                        |
| ECG L LEAD OFF                            | The L lead wire of ECG is not<br>connected correctly                                 | Check the connection of L<br>lead wire                                                                        |
| ECG R LEAD OFF                            | The R lead wire of ECG is not<br>connected correctly                                 | Check the connection of R<br>lead wire                                                                        |
| SpO <sub>2</sub> SENSOR OFF               | SpO <sub>2</sub> sensor is not connected correctly                                   | Check the connection of SpO <sub>2</sub> sensor                                                               |
| SpO <sub>2</sub> : INTERFERENCE           | Noise detected on the pulse<br>signal prevents pulse<br>discrimination               | Decrease patient motion.<br>Check sensor.                                                                     |
| SpO <sub>2</sub> : PULSE SEARCH           | Hardware settings are being<br>adjusted in order to<br>discriminate a pulse waveform | Wait several seconds for<br>saturation value to appear. If<br>it does not appear, do one of<br>the following: |
|                                           |                                                                                      | <ul> <li>Change to site where<br/>pulse is stronger if patient<br/>is vasoconstricted</li> </ul>              |
|                                           |                                                                                      | <ul> <li>Change or readjust<br/>sensor if loose</li> </ul>                                                    |
| SpO <sub>2</sub> : LOW PERFUSION          | Patient perfusion is low                                                             | Check patient connection and<br>patient status                                                                |
| SpO2: TOO MUCH LIGHT                      | There is too much ambient room<br>light for the sensor to function<br>properly       | Minimize the room light<br>around the patient. Check<br>sensor.                                               |
| SpO <sub>2</sub> : UNRECOGNIZED<br>SENSOR | The sensor is not recognized by the monitor                                          | Replace the sensor with a recommended sensor from Customer Service.                                           |
| SpO <sub>2</sub> : COMMUNICATION<br>ERROR | The monitor and the SpO <sub>2</sub><br>modules are not communicating<br>properly    | Power the unit OFF/ON. If<br>problem persists, notify<br>hospital technician or<br>Customer Service.          |
| SpO <sub>2</sub> : BOARD FAULT            | MasimoSET® board failed to operate properly                                          | Notify hospital technician or<br>Customer Service.                                                            |
| SpO <sub>2</sub> : SENSOR FAULT           | Defective Sensor                                                                     | Replace sensor                                                                                                |
| TEMP SENSOR OFF                           | TEMP sensor is not connected correctly                                               | Check the connection of<br>TEMP sensor                                                                        |
| IBP LEAD OFF                              | IBP cable is not connected correctly                                                 | Check the connection of IBP cable                                                                             |
| ECG NOISE                                 | Excessive interference appears on the ECG signals                                    | Check the connection of ECG<br>lead wires. Check the current<br>condition of the patient.                     |
| *XX ALM LMT ERR                           | The alarm limit of XX parameter<br>has inadvertently deviated from<br>standard range | If message does not clear contact Customer Service.                                                           |

\* XX represents all the parameter modules in the system such as ECG, NIBP,  $SpO_2$  IBP module, etc.

| PROBLEM/MESSAGE        | REASON                                                                                                                     | SOLUTION                                                                                                                         |
|------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| *XX RANGE EXCEEDED     | The measured value of XX<br>parameter has exceeded the<br>system measurement range                                         | If message does not clear contact Customer Service.                                                                              |
| REAL CLOCK NEEDSET     | If the monitor displays 2000-1-<br>1, this system prompt reminds<br>the user that the current system<br>time is inaccurate | Reset the system time. After<br>setting the time, the user<br>should cycle power. This will<br>avoid any time storage<br>errors. |
| REAL CLOCK NOT EXIST   | The system has no cell battery or the battery has run down                                                                 | Install or replace the cell battery                                                                                              |
| SYSTEM WD FAILURE      | The system has a fatal error or                                                                                            | Restart the system. If message                                                                                                   |
| SYSTEM SOFTWARE ERR    | failure                                                                                                                    | does not clear contact<br>Customer Service.                                                                                      |
| SYSTEM CMOS FULL       |                                                                                                                            | Cusiomer Service.                                                                                                                |
| SYSTEM CMOS ERR        |                                                                                                                            |                                                                                                                                  |
| SYSTEM EPGA FAILURE    |                                                                                                                            |                                                                                                                                  |
| SYSTEM FAILURE2        |                                                                                                                            |                                                                                                                                  |
| SYSTEM FAILURE3        |                                                                                                                            |                                                                                                                                  |
| SYSTEM FAILURE4        |                                                                                                                            |                                                                                                                                  |
| SYSTEM FAILURE5        |                                                                                                                            |                                                                                                                                  |
| SYSTEM FAILURE6        |                                                                                                                            |                                                                                                                                  |
| SYSTEM FAILURE7        |                                                                                                                            |                                                                                                                                  |
| SYSTEM FAILURE8        |                                                                                                                            |                                                                                                                                  |
| SYSTEM FAILURE9        |                                                                                                                            |                                                                                                                                  |
| SYSTEM FAILURE10       |                                                                                                                            |                                                                                                                                  |
| SYSTEM FAILURE11       |                                                                                                                            |                                                                                                                                  |
| SYSTEM FAILURE12       |                                                                                                                            |                                                                                                                                  |
| KEYBOARD NOT AVAILABLE | The keypad cannot be used                                                                                                  | Check the keys for abnormal<br>depression. Contact the<br>manufacturer for repair.                                               |
| KEYBOARD COMM ERR      | The keypad has a failure                                                                                                   | Contact the manufacturer for                                                                                                     |
| KEYBOARD ERROR         |                                                                                                                            | repair                                                                                                                           |
| KEYBOARD FAILURE       |                                                                                                                            |                                                                                                                                  |
| KEYBOARD ERR1          |                                                                                                                            |                                                                                                                                  |
| KEYBOARD ERR2          |                                                                                                                            |                                                                                                                                  |
| 5V TOO HIGH            | The power supply has a failure                                                                                             | Restart the system. If message                                                                                                   |
| 5V TOO LOW             |                                                                                                                            | does not clear contact<br>Customer Service.                                                                                      |
| POWER ERR3             |                                                                                                                            |                                                                                                                                  |
| POWER ERR4             |                                                                                                                            |                                                                                                                                  |
| 12V TOO HIGH           |                                                                                                                            |                                                                                                                                  |
| 12V TOO LOW            |                                                                                                                            |                                                                                                                                  |
| POWER ERR7             |                                                                                                                            |                                                                                                                                  |
| POWER ERR8             |                                                                                                                            |                                                                                                                                  |
| 3.3V TOO HIGH          |                                                                                                                            |                                                                                                                                  |
| 3.3V TOO LOW           |                                                                                                                            |                                                                                                                                  |

\* XX represents all the parameter modules in the system such as ECG, NIBP, SpO<sub>2</sub> IBP module, etc.

| PROBLEM/MESSAGE                       | REASON                                                                                                       | SOLUTION                                                                                                                                                                                             |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CELL BAT TOO HIGH                     | Cell battery is defective.<br>Incorrect cell battery installed                                               | Replace the battery. If<br>message does not clear                                                                                                                                                    |
| CELL BAT TOO LOW                      | The cell battery has become<br>depleted. The cell battery is not<br>installed or the connection is<br>loose. | contact Customer Service.                                                                                                                                                                            |
| RECORDER SELF TEST ERR                | During the recorder self test,<br>there is a Recorder Module<br>communication failure                        | Execute <b>Clear Record Task</b><br>function in the recorder setup<br>menu to reset communication<br>between the host and the<br>recorder. If message does not<br>clear contact Customer<br>Service. |
| RECORDER VLT HIGH<br>RECORDER VLT LOW | The recorder module has<br>voltage failure                                                                   | Contact the manufacturer for repair                                                                                                                                                                  |
| RECORDER HEAD HOT                     | The continuous recording time<br>may be too long                                                             | After the recorder cools<br>down, use again. If the<br>problem still exists, contact<br>the manufacturer for repair.                                                                                 |
| rec head in wrong<br>Position         | The recorder roller lever is not<br>pressed down                                                             | Press down the recorder roller<br>lever                                                                                                                                                              |
| RECORDER OUT OF PAPER                 | No paper is in the recorder                                                                                  | Install paper into the recorde                                                                                                                                                                       |
| RECORDER PAPER JAM                    | The paper in the recorder is jammed                                                                          | Re-install the recorder paper<br>and try again                                                                                                                                                       |
| RECORDER COMM ERR                     | The communication of the recorder is abnormal                                                                | Execute <b>Clear Record Task</b><br>from the recorder setup menu<br>to reset communication<br>between the host and the<br>recorder. If message does not<br>clear contact Customer<br>Service.        |
| RECORDER PAPER W.P.                   | The recorder paper is not<br>installed in the correction<br>position                                         | Install the recorder paper in the correct position                                                                                                                                                   |
| REC NOT AVAILABLE                     | Cannot communicate with the recorder                                                                         | Execute <b>Clear Record Task</b><br>from the recorder setup menu,<br>to reset communication<br>between the host and the<br>recorder. If message does not<br>clear contact Customer<br>Service.       |
| NIBP INIT ERR                         | NIBP initialization error                                                                                    | Restart the system. If message                                                                                                                                                                       |
| NIBP SELFTEST ERR                     |                                                                                                              | does not clear contact<br>Customer Service.                                                                                                                                                          |
| NIBP ILLEGALLY RESET                  | During NIBP measurement,<br>illegal reset occurs                                                             | Check the airway of NIBP to<br>see if there are occlusions.<br>Then measure again. If the<br>problem persists, contact the<br>manufacturer for repair.                                               |
| NIBP COMM ERR                         | No NIBP communication                                                                                        | Restart the system. If message<br>does not clear contact<br>Customer Service.                                                                                                                        |

\* XX represents all the parameter modules in the system such as ECG, NIBP, SpO<sub>2</sub>, IBP module, etc.

| PROBLEM/MESSAGE     | REASON                                                                                                       | SOLUTION                                                                                                                                                            |
|---------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LOOSE CUFF          | The NIBP cuff is not connected correctly                                                                     | Re-connect the NIBP cuff.                                                                                                                                           |
| AIR LEAK            | The NIBP cuff is not connected<br>correctly or there are leaks in<br>the airway                              | Check the connection of each<br>part or replace cuff and hose.<br>If message does not clear<br>contact Customer Service.                                            |
| OVER PRESSURE       | NIBP is in an overpressure condition.                                                                        | Check for occlusion in cuff<br>and hose. Measure again. If<br>message does not clear<br>contact Customer Service.                                                   |
| SIGNAL SATURATED    | Problem occurs when<br>measuring NIBP. The system<br>cannot perform measurement,<br>analysis or calculation. | Check the connection of the<br>cuff and hose. Check<br>patient's condition. Measure<br>again, if the failure persists,<br>contact the manufacturer for<br>repair.   |
| TIME OUT            | Problem occurs when<br>measuring NIBP. The system<br>cannot perform measurement,<br>analysis or calculation. | Check the connection of the<br>cuff and hose. Check<br>patient's condition. Measure<br>again, if the failure persists,<br>contact the manufacturer for<br>repair.   |
| CUFF TYPE ERR       | NIBP cuff may be wrong size                                                                                  | Check if the patient size is set<br>correctly. Replace existing<br>cuff with correct size cuff. If<br>the failure persists, contact<br>the manufacturer for repair. |
| PNEUMATIC LEAK      | NIBP airway has leaks                                                                                        | Check the connection of cuff<br>and hose or replace cuff and<br>hose. If the failure persists,<br>contact the manufacturer for<br>repair.                           |
| MEASURE FAIL        | Problem occurs when<br>measuring NIBP. The system<br>cannot perform measurement,<br>analysis or calculation. | Check the connection of the<br>cuff and hose. Check<br>patient's condition. Measure<br>again, if the failure persists,<br>contact the manufacturer for<br>repair.   |
| NIBP SYSTEM FAILURE | Problem occurs when<br>measuring NIBP. The system<br>cannot perform measurement,<br>analysis or calculation. | Check the connection of the<br>cuff and hose. Check<br>patient's condition. Measure<br>again, if the failure persists,<br>contact the manufacturer for<br>repair.   |

\* XX represents all the parameter modules in the system such as ECG, NIBP, SpO<sub>2</sub>, IBP module, etc.

Mindray DS USA, Inc. • 800 MacArthur Boulevard • Mahwah, NJ 07430 • USA • Dom. Customer Service: 1.800.288.2121 • Intl. Customer Service: +1.201.995.8000 • Dom. Fax: 1.800.926.4275 • Intl. Fax: +1.201.995.8680 • www.mindray.com

Mindray Medical Netherlands B.V. • P.O. Box 26 • 3870 CA Hoevelaken • The Netherlands • Tel: +31 33 25 44 911 • Fax: +31 33 25 37 621

Mindray (UK) Limited • 3 Percy Road • St. John's Park • Huntingdon • Cambridgeshire PE29 6SZ • United Kingdom • Tel: 01480 416840 • Fax: 01480 436588

Mindray Medical France SARL • Europarc Créteil •123, Chemin des Bassins • 94035 Créteil Cedex • France • Tel: (0)1.45.13.91.50 • Fax: (0)1.45.13.91.51

Mindray Medical German GmbH • Zwischen den Bächen 4 • 64625 Bensheim • Germany • Tel: +49.6251.17524-0 • Fax: +49.6251.17524-20

Mindray Medical International Ltd. • 2813 Office Tower, Convention Plaza • No 1 Harbour Road • Wanchai • Hong Kong • Tel: +852 2793 5596 • Fax: +852 2344 8824